Skip to main content
Log in

Assisted adaptive extended Kalman filter for low-cost single-frequency GPS/SBAS kinematic positioning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Using a low-cost single-frequency global positioning system (GPS) receiver for kinematic positioning, the ambiguity resolution requires longer data accumulation time compared to survey-grade dual-frequency receivers. A satellite-based augmentation system (SBAS) can provide added measurement to help solve this problem. However, the SBAS signal strength is weaker and the satellite orbit and clock errors are greater than those of GPS satellites. The difference in phase measurement quality between GPS and SBAS satellites must be considered to prevent an unstable positioning result or diverging position solution. This study proposes using the assisted adaptive extended Kalman filter (AAEKF) method to address this problem. The concept of AAEKF involves using measurements from the reference station to estimate the errors of each satellite. This information is then employed to dynamically adjust the corresponding measurement model of the extended Kalman filter. The proposed method was validated with 24 h of experiment data from four different baselines obtained using a consumer-grade L1 GPS receiver. The experimental results show that AAEKF can be successfully employed for GPS/SBAS kinematic positioning. The ambiguity resolution success rates of 2, 5, and 10 min of measurements improved by about 3.2, 2.4, and 1.6 times, respectively, and the positioning accuracy of the north, east, and height directions improved by 14–44, 17–56, and 9–53 %, when adding the SBAS measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beutler G, Bauersima I, Gurtner W, Rothacher M, Schildknecht T, Geiger A (1988) Atmospheric refraction and other important biases in GPS carrier phase observations. In: Brunner FK (ed) Atmospheric effects on geodetic space measurements. Monograph 12, School of surveying NSW, Sydney, pp 15–44

    Google Scholar 

  • Boriskin A, Kozlov D, Zyryanov G (2007) L1 RTK system with fixed ambiguity: what SBAS ranging brings. In: Proceedings of ION GNSS-2007, Fort Worth, TX, September 25–28, pp 2196–2201

  • Counselman CC III, Abbot RI (1989) Method of resolving radio phase ambiguity in satellite orbit determination. J Geophys Res 94:7058–7064

    Article  Google Scholar 

  • de Bakker PF, van der Marel H, Tiberius CJM (2008) Geometry-free undifferenced, single and double differenced analysis of single frequency GPS EGNOS and GIOVE-A/B measurement. GPS Solut 13(4):305–314. doi:10.1007/s10291-009-0123-6

    Article  Google Scholar 

  • Farrell J, Givargis T (2000) Differential GPS reference station algorithm: design and analysis. IEEE Trans Control Syst Technol 8(3):519–531. doi:10.1109/87.845882

    Article  Google Scholar 

  • Fotopoulos G, Cannon ME (2001) An overview of multi-reference station methods for cm-level positioning. GPS Solut 4(3):1–10. doi:10.1007/PL00012849

    Article  Google Scholar 

  • Frei E, Beutler G (1990) Rapid static positioning based on the fast ambiguity resolution approach “FARA”: theory and first results. Manuscr Geod 15:325–356

    Google Scholar 

  • Gelb A (1974) Applied optimal estimation. MIT Press, Cambridge, MA. ISBN 0262570483

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (1994) Global positioning system theory and practice, 3rd edn. Springer, Wien, NY, pp 14, 124–127

  • Jin XX (1996) A new algorithm for generating carrier adjusted differential GPS corrections. J Geod 70(11):673–680. doi:10.1007/BF00867146

    Article  Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst AES 23(3):325–331. doi:10.1109/TAES.1987.310829

    Article  Google Scholar 

  • Kozlov D, Tkachenko M (1998) Centimeter level real-time kinematic positioning with GPS + GLONASS C/A receivers. Navigation 45(2):137–147

    Article  Google Scholar 

  • Leick A (2004) GPS satellite surveying, 3rd ed. Wiley, Hoboken, pp 172–177. ISBN: 978-0-471-05930-1

  • Lin SG, Yu FG (2013) Cycle slips detection algorithm for low cost single-frequency GPS RTK positioning. Surv Rev 45(330):206–214. doi:10.1179/1752270612Y.0000000034

    Article  Google Scholar 

  • Loomis P, Kremer G, Reynolds J (1989) Correction algorithms for differential GPS reference stations. Navigation 36(2):179–193

    Article  Google Scholar 

  • Mehra RK (1972) Approaches to adaptive filtering. IEEE Trans Autom Control AC 17(5):693–698. doi:10.1109/TAC.1972.1100100

    Article  Google Scholar 

  • Odijk D, van der Marel H, Song I (2000) Precise GPS positioning by applying ionospheric corrections from an active control network. GPS Solut 3(3):49–57. doi:10.1007/PL00012804

    Article  Google Scholar 

  • Parkinson BW, Spilker JJ Jr (1996) Global positioning system: theory and applications, vol 2. Wiley, London, pp 12–23

    Google Scholar 

  • Skaloud J (1998) Reducing the GPS ambiguity search space by including inertial data. In: Proceedings of ION GPS-1998, Nashville, TN, September 15–18, pp 2073–2080

  • Takasu T, Yasuda A (2008) Evaluation of RTK-GPS performance with low-cost single-frequency GPS receivers. In: International symposium on GPS/GNSS 2008, November 11–14, Tokyo International Exchange Center, Japan 2008. RTKLIB: An Open Source Program Package for RTK-GPS. http://gpspp.sakura.ne.jp/rtklib/rtklib.htm

  • Teunissen PJG (1995) The least-squares ambiguity estimation decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82. doi:10.1007/BF00863419

    Article  Google Scholar 

  • Tiberius CCJM, de Jonge PJ (1995) Fast positioning using the LAMBDA-method. In: Proceedings of DSNS-95, Bergen, NOR, April 22–28, paper no. 30

  • Tsui JB (2005) Fundamentals of global positioning system receivers: a software approach. Wiley, Hoboken, NJ, pp 226–229

    Google Scholar 

  • Vollath U, Buecherl A, Landau H, Pagels C, Wagner B (2000) Multi-base RTK positioning using virtual reference stations. In: Proc. ION GPS 2000, Salt Lake City, UT, September 19–22, pp 123–131

  • Wirola L, Alanen K, Käppi J, Syrjärinne J (2006) Bringing RTK to cellular terminals using a low-cost single-frequency AGPS receiver and inertial sensors, IEEE/ION PLANS 2006 conference, San Diego, CA, pp 24–27

  • Yang Y, He H, Xu G (2001) Adaptive robust filtering for kinematic geodetic positioning. J Geod 75:109–116

    Article  Google Scholar 

  • Zhang J, Lachapelle G (2001) Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. J Geod 75(5–6):255–266. doi:10.1007/s001900100171

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to a research Grant NSC 101-2221-E-019-070-MY3 from the National Science Council. The generous provision of GPS data for this study by the  Institute of Earth Sciences Academia Sinica is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiou-Gwo Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SG. Assisted adaptive extended Kalman filter for low-cost single-frequency GPS/SBAS kinematic positioning. GPS Solut 19, 215–223 (2015). https://doi.org/10.1007/s10291-014-0381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0381-9

Keywords

Navigation