Skip to main content

Advertisement

Log in

Using geodetic GPS receivers to measure vegetation water content

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

A GPS-based method is presented to measure vegetation water content. Commercially available geodetic-quality GPS receivers and antennas are used. The method is tested using GPS measurements collected over three field seasons. The GPS data are compared with in situ data for three plant types: desert grass, wheat, and alfalfa. The GPS retrievals of vegetation water content are based on the GPS signal-to-noise ratio (SNR) data. Instrumental issues that affect the SNR data are discussed, particularly satellite transmit power variations, footprint variations, and temperature effects. The amplitudes of the SNR data show a nearly linear relationship to the water content in grasses (0–0.5 kg/m2) and wheat crops (0–0.9 kg/m2). As predicted by theory, this simple linear relationship breaks down in vegetation with heavy water content, such as alfalfa. The field results are consistent with forward model predictions, whose effect restricts the use of this simple linear model for vegetation to water content of less than ~1 kg/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bindlish R, Barros AP (2001) Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens Environ 76(1):130–137

    Article  Google Scholar 

  • Chew CC, Small EE, Larson KM, Zavorotny VU (2014a) Effects of near-surface soil moisture on GPS SNR data: development of a retrieval algorithm for soil moisture. IEEE Trans Geosci Rem Sens 52(1):537–543. doi:10.1109/TGRS.2013.2242332

    Article  Google Scholar 

  • Chew CC, Small EE, Larson KM, Zavorotny VU (2014b) Utility and limitations of GPS-interferometric reflectometry in vegetation sensing. IEEE Trans Geosci Rem Sens. (submitted for publication); reviewed and revised

  • Egido A, Caparrini M, Ruffini G, Paloscia S, Santi E, Guerriero L, Pierdicca N, Floury N (2012) Global navigation satellite systems reflectometry as a remote sensing tool for agriculture. Rem Sens 4(8):2356–2372. doi:10.3390/rs4082356

    Article  Google Scholar 

  • Garrison JL, Katzberg SJ (2000) The application of reflected GPS signals to ocean remote sensing. Rem Sens Environ 73(2):175–187. doi:10.1016/s0034-4257(00)00092-4

    Article  Google Scholar 

  • Garrison JL, Komjathy A, Zavorotny VU, Katzberg SJ (2002) Wind speed measurement using forward scattered GPS signals. IEEE Trans Geosci Remote Sens 40(1):50–65

    Article  Google Scholar 

  • Gleason S, Hodgart S, Yiping S, Gommenginger C, Mackin S, Adjrad M, Unwin M (2005) Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. IEEE Trans Geosci Rem Sens 43(6):1229–1241. doi:10.1109/TGRS.2005.845643

    Article  Google Scholar 

  • Katzberg SJ, Torres O, Grant MS, Masters D (2005) Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: results from SMEX02. Rem Sens Environ 100(1):17–28. doi:10.1016/j.rse.2005.09.015

    Article  Google Scholar 

  • Larson KM (2013) A methodology to eliminate snow and ice-contaminated solutions from GPS coordinate time series. J Geophys Res 118(8):4503–4510. doi:10.1002/jgrb.50307

    Article  Google Scholar 

  • Larson KM, Nievinski FG (2013) GPS snow sensing: results from the EarthScope plate boundary observatory. GPS Solut 17(1):41–52. doi:10.1007/s10291-012-0259-7

    Article  Google Scholar 

  • Larson KM, Small EE (2013) Using GPS to study the terrestrial water cycle. EOS Trans AGU 94(52):505–506

    Article  Google Scholar 

  • Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny V (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. doi:10.1029/2008GL036013

    Article  Google Scholar 

  • Larson KM, Gutmann ED, Zavorotny V, Braun A, Williams MW, Nievinski FG (2009) Can we measure snow depth with GPS receivers. Geophys Res Lett 36:L17502. doi:10.1029/2009GL039430

    Article  Google Scholar 

  • Larson KM, Braun JJ, Small EE, Zavorotny VU, Gutmann ED, Bilich AL (2010) GPS multipath and its relation to near-surface soil moisture content. IEEE JSTARS 3(1):91–99. doi:10.1109/JSTARS.2009.2033612

    Google Scholar 

  • Larson KM, Löfgren JS, Haas R (2013) Coastal sea level measurements using a single geodetic GPS receiver. Adv Space Res 51(8):1301–1310. doi:10.1016/j.asr.2012.04.017

    Article  Google Scholar 

  • Luckman A, Baker J, Kuplich TM, Freitas C, Frery AC (1997) A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments. Rem Sens Environ 60:1–13

    Article  Google Scholar 

  • Macelloni G, Paloscia S, Pampaloni P, Marliani F, Gai M (2001) The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans Geo Rem Sens 39(4):873–884. doi:10.1109/36.917914

    Article  Google Scholar 

  • Martin-Neira M (1993) A Passive Reflectometry and Interferometry System (PARIS)-application to ocean altimetry. ESA J 17(4):331–355

    Google Scholar 

  • Mo T, Choudhury BJ, Schmugge TG, Wang JR, Jackson TJ (1982) A model for microwave emission from vegetation-covered fields. J Geophys Res 87(1):11229–11237

    Article  Google Scholar 

  • Rodriguez-Alvarez N, Camps A, Vall-llossera M, Bosch-Lluis X, Monerris A, Ramos-Perez I, Valencia E, Marchan-Hernandez JF, Martinez-Fernandez J, Baroncini-Turricchia G, Perez GC, Sanchez N (2011) Land geophysical parameters retrieval using the interference pattern GNSS-R technique. IEEE Trans Geosci Rem Sens 49(1):71–84. doi:10.1109/TGRS.2010.2049023

    Article  Google Scholar 

  • Rodriguez-Alvarez N, Bosch-Lluis X, Camps A, Ramos-Perez I, Valencia E, Hyuk P, Vall-llossera M (2012) Vegetation water content estimation using GNSS measurements. IEEE Geosci Rem Sens Lett 9(2):282–286. doi:10.1109/LGRS.2011.2166242

    Article  Google Scholar 

  • Segall P, Davis J (1997) GPS applications for geodynamics and earthquake studies. Ann Rev Earth Planet Sci 25:301–336. doi:10.1146/annurev.earth.25.1.301

    Article  Google Scholar 

  • Small EE, Larson KM, Braun JJ (2010) Sensing vegetation growth with reflected GPS signals. Geophys Res Lett 37(12):L12401. doi:10.1029/2010GL042951

    Article  Google Scholar 

  • Zavorotny VU, Larson KM, Braun JJ, Small EE, Gutmann ED, Bilich AL (2010) A physical model for GPS multipath caused by land reflections: toward bare soil moisture retrievals. IEEE JSTARS 3(1):100–110. doi:10.1109/JSTARS.2009.2033608

    Google Scholar 

Download references

Acknowledgments

The first author’s visit to the University of Colorado was funded by China Scholarship Council, File No. 201206010122. The University of Colorado was funded by NSF AGS0935725 and EAR1144221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine M. Larson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, W., Larson, K.M., Small, E.E. et al. Using geodetic GPS receivers to measure vegetation water content. GPS Solut 19, 237–248 (2015). https://doi.org/10.1007/s10291-014-0383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0383-7

Keywords

Navigation