Skip to main content
Log in

Unambiguous combined correlation functions for sine-BOC signal tracking

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Binary offset carrier (BOC) modulated signal has been widely employed in modern global navigation satellite system (GNSS). However, the multiple peaks auto-correlation function of BOC signal leads to tracking ambiguity problem. For high-order BOC signal, the above problem becomes more severe. We propose an unambiguous tracking method based on combined correlation functions for sine-BOC signal. The main feature of this technique is that two new local reference waveforms are used. Based on the cross-correlation functions between the BOC signal and these two local reference waveforms, unambiguous combined correlation functions without any main positive side-peaks are generated. To achieve unambiguous tracking for sine-BOC signal, we present two non-coherent discriminator functions, denoted as V 1 and V 2. The theoretical expressions of code tracking error in thermal noise are derived. Then, the impact of thermal noise and multipath is analyzed with the help of numerical simulations. Results show that V 1 is easier to implement and has relatively better multipath mitigation performance at the expense of some performance degradation in code tracking error. V 2 has better code tracking accuracy and provides the most robust code tracking process for high-order sine-BOC signal, but two additional complex correlators are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anantharamu PB, Borio D, Lachapelle G (2009) Pre-filtering, side-peak rejection and mapping: several solutions for unambiguous BOC Tracking. In: Proceedings of ION GNSS 2009, Institute of Navigation, Savannah, GA, pp 3142–3155

  • Anantharamu PB, Borio D, Lachapelle G (2011) Sub-carrier shaping for BOC modulated GNSS signals. EURASIP J Adv Signal Process 133:1–18

    Google Scholar 

  • Barker BC, Betz JW, Clark JE, Correia JT, Gillis JT, Lazar S, Rehborn KA, Straton JR (2000) Overview of the GPS M code signal. In: Proceedings of ION NTM 2000, Institute of Navigation, Anaheim, CA, pp 542–549

  • Betz JW (1999) The offset carrier modulation for GPS modernization. In: Proceedings of ION NTM 1999, Institute of Navigation, San Diego, CA, pp 639–648

  • Betz JW (2002) Binary offset carrier modulations for radionavigation. Navigation 48(4):227–246

    Article  Google Scholar 

  • Blunt P, Weiler R, Hodgart S, Unwin M (2007) Demonstration of BOC(15, 2.5) acquisition and tracking with a prototype hardware receiver. In: Proceedings of ENC-GNSS, Geneva, Switzerland, pp 1–11

  • Fine P, Wilson W (1999) Tracking algorithm for GPS offset carrier signals. In: Proceeding of ION NTM 1999, Institute of Navigation, San Diego, CA, pp 671–676

  • Garin L (2005) The ‘‘Shaping Correlator’’, Novel multipath mitigation technique applicable to Galileo BOC(1,1) modulation waveforms in high volume markets. In: Proceedings of ENC-GNSS, Munich, Germany, pp 1–16

  • Hodgart MS, Blunt PD (2007) Dual estimate receiver of binary offset carrier modulated signals for global navigation satellite systems. Electron Lett 43(16):877–878

    Article  Google Scholar 

  • Hodgart MS, Blunt PD, Unwin M (2007) The optimal dual estimate solution for robust tracking of binary offset carrier (BOC) modulation. In: Proceeding of ION GNSS 2007, Institute of Navigation, Fort Worth, TX, pp 1017–1027

  • Julien O, Cannon ME, Lachapelle G, Mongredien C (2004) A new unambiguous BOC(n,n) signal tracking technique. In: Proceedings of ENC GNSS 2004, Rotterdam, pp 1–12

  • Julien O, Macabiau C, Cannon ME, Lachapelle G (2011) ASPeCT: unambiguous sine-BOC(n, n) acquisition/tracking technique for navigation applications. IEEE Trans Aerosp Electron Syst 43(1):150–162

    Article  Google Scholar 

  • Kao TL, Juang JC (2012) Weighted discriminators for GNSS BOC signal tracking. GPS Solutions 16(3):339–351

    Article  Google Scholar 

  • Lohan ES, Lakhzouri A, Renfors M (2006) Binary-offset-carrier modulation techniques with applications in satellite navigation systems. Wirel Commun Mobile Comput 7:767–779

    Article  Google Scholar 

  • Martin N, Leblond V, Guillotel G, and Heiries V (2003) BOC(x,y) signal acquisition techniques and performances. In: Proceedings of ION GPS/GNSS 2003, Institute of Navigation, Portland, OR, pp 188–198

  • Nunes FD, Sousa FMG, Leitao JMN (2007) Gating functions for multipath mitigation in GNSS BOC signals. IEEE Trans Aerosp Electron Syst 43(3):951–964

    Article  Google Scholar 

  • Rebeyrol E, Macabiau C, Lestarquit L, Ries L, Issler JL, Boucheret ML, Bousquet M (2005) BOC power spectrum densities. In: Proceedings of ION NTM 2005, Institute of Navigation, San Diego, CA, pp 769–778

  • Tang Z, Zhou H, Hu X, Ran Y, Liu Y, Zhou Y (2010) Research on performance evaluation of Compass signal. Sci Sin Phys Mech Astron 40(5):592–602

    Google Scholar 

  • Yao Z, Cui X, Lu M, Feng Z (2010) Pseudo-correlation-function-based unambiguous tracking technique for sine-BOC signals. IEEE Trans Aerosp Electron Syst 46(4):1782–1796

    Article  Google Scholar 

  • Zhou Y, Hu X, Ke T, Tang Z (2012) Ambiguity mitigating technique for cosine-phased binary offset carrier signal. IEEE Trans Wirel Commun 11(6):1981–1984

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuping Tang.

Appendix: Derivation of code tracking error variance

Appendix: Derivation of code tracking error variance

The non-coherent discriminator functions are used in our method, so we can set \(\Delta \theta \approx 0\). In this derivation, we take some simplified hypothesis. First, we assume that filter is ideal, i.e.,

$$H\left( f \right) = H^{*} \left( { - f} \right) = \left| {H\left( f \right)} \right|$$

In the case of infinite bandwidth, it is easy to prove that

$$\begin{aligned} R_{1,2} \left( 0 \right) = 0,\;R_{1,2} \left( d \right) = R_{1,2} \left( { - d} \right) = 0 \hfill \\ R_{\text{BOC,ref1}} \left( \varepsilon \right) = R_{\text{BOC,ref2}} \left( \varepsilon \right)\quad {\text{when}}\;\left| \varepsilon \right| \le T_{\text{s}} \hfill \\ \end{aligned}$$

Thus, they are also approximately established in bandwidth limitation case, i.e.,

$$\begin{aligned} & \int_{ - \infty }^{\infty } {H(f)G_{\text{BOC,ref1}} (f){\text{e}}^{ - j\pi fd} {\text{d}}f} \approx \int_{ - \infty }^{\infty } {H(f)G_{\text{BOC,ref1}} (f){\text{e}}^{j\pi fd} {\text{d}}f} \\ & \approx \int_{ - \infty }^{\infty } {H(f)G_{\text{BOC,ref2}} (f){\text{e}}^{ - j\pi fd} {\text{d}}f} \approx \int_{ - \infty }^{\infty } {H(f)G_{\text{BOC,ref2}} (f){\text{e}}^{j\pi fd} {\text{d}}f} \\ & \approx \int_{ - \infty }^{\infty } {H(f)G_{\text{BOC,ref1}} \left( f \right){ \cos }\left( {\pi fd} \right){\text{d}}f} \\ \end{aligned}$$
(27)

Based on the above assumptions, we next provide a simple derivation of the approximate code tracking error variation.

Discriminator function V 1

Ignoring the noise terms, V 1 can be expanded to the following equation,

$$V_{1} \approx 8C\left( {\hat{R}_{\text{BOC,ref1}}^{2} \left( {\Delta \tau - \frac{d}{2}} \right) - \hat{R}_{\text{BOC,ref1}}^{2} \left( {\Delta \tau + \frac{d}{2}} \right)} \right)$$
(28)

Following (16), the CCF is converted to frequency domain, then the discriminator gain at \(\Delta \tau = 0\) is

$$K_{1} = \left. {\frac{{{\text{d}}V_{1} }}{{{\text{d}}\Delta \tau }}} \right|_{\Delta \tau = 0} = 64\pi C\left( \begin{aligned} \int_{ - \infty }^{\infty } {H(f)G_{\text{BOC,ref1}} \left( f \right)\cos \left( {\pi fd} \right){\text{d}}f} \cdot \hfill \\ \int_{ - \infty }^{\infty } {f \cdot H(f)G_{\text{BOC,ref1}} \left( f \right)\sin \left( {\pi fd} \right){\text{d}}f} \hfill \\ \end{aligned} \right)$$
(29)

Noted that (29) is the discriminator gain in the case of bandwidth limitation.

Let

$$\begin{aligned} X &= \left( {\left| {{\text{IE}}_{1} } \right| + \left| {{\text{IE}}_{2} } \right| - \left| {{\text{IE}}_{1} - {\text{IE}}_{2} } \right|} \right) \ge 0 \hfill \\ Y &= \left( {\left| {{\text{IL}}_{1} } \right| + \left| {{\text{IL}}_{2} } \right| - \left| {{\text{IL}}_{1} - {\text{IL}}_{2} } \right|} \right) \ge 0 \hfill \\ Z &= \left( {\left| {{\text{QE}}_{1} } \right| + \left| {{\text{QE}}_{2} } \right| - \left| {{\text{QE}}_{1} - {\text{QE}}_{2} } \right|} \right) \ge 0 \hfill \\ W &= \left( {\left| {{\text{QL}}_{1} } \right| + \left| {{\text{QL}}_{2} } \right| - \left| {{\text{QL}}_{1} - {\text{QL}}_{2} } \right|} \right) \ge 0 \hfill \\ \end{aligned}$$
(30)

then \(V_{1} = \left( {X^{2} - Y^{2} } \right) + \left( {Z^{2} - W^{2} } \right)\).\(E\left[ {V_{1} } \right] = 0\). Now, we discuss the distribution of X. For different values of IE1 and IE2, X is calculated by

$$X = \left\{ {\begin{array}{*{20}l} {2{\text{IE}}_{1} ,} \hfill & {0 < {\text{IE}}_{1} < {\text{IE}}_{2} \, } \hfill \\ {{ - }2{\text{IE}}_{1} ,} \hfill & {{\text{IE}}_{2} < {\text{IE}}_{1} < 0\;{\text{or}}} \hfill \\ { 0 ,} \hfill & {{\text{IE}}_{1} < 0 \le {\text{IE}}_{2} } \hfill \\ {2{\text{IE}}_{2} ,} \hfill & {0 < {\text{IE}}_{2} < {\text{IE}}_{1} \;{\text{or}}} \hfill \\ { - }{{\text{IE}}_{2} ,} \hfill & {{\text{IE}}_{1} < {\text{IE}}_{2} < 0\;{\text{or}}} \hfill \\ { 0 ,} \hfill & {{\text{IE}}_{2} < 0 \le {\text{IE}}_{1} } \hfill \\ \end{array} } \right.$$
(31)

According to (20) and (21), IE1 and IE2 can be seen as the independent and identically distributed Gaussian random variables

$$N\left( {\sqrt {2C} \hat{R}_{\text{BOC,ref1}} \left( {{d \mathord{\left/ {\vphantom {d 2}} \right. \kern-0pt} 2}} \right),\frac{{N_{0} }}{{T_{\text{P}} }}\hat{R}_{1,1} \left( 0 \right)} \right)$$

Let \(f_{X} \left( x \right)\) be the probability density function of \(X\), according to (31), we derive out

$$f_{X} \left( x \right) = \varPi \left( {\sqrt {2C} \hat{R}_{\text{BOC,ref1}} \left( {{d \mathord{\left/ {\vphantom {d 2}} \right. \kern-0pt} 2}} \right),\frac{{N_{0} }}{{T_{\text{P}} }}\hat{R}_{1,1} \left( 0 \right),x} \right)\quad ,x > 0$$
(32)

where

$$\varPi \left( {\mu ,\sigma^{2} ,x} \right) = \frac{1}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\frac{x}{2} - \mu } \right)^{2} }}{{2\sigma^{2} }}}} Q\left( {\frac{{\frac{x}{2} - \mu }}{\sigma }} \right) + \frac{1}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\frac{x}{2} + \mu } \right)^{2} }}{{2\sigma^{2} }}}} Q\left( {\frac{{\frac{x}{2} + \mu }}{\sigma }} \right)$$
(33)

Similarly, the probability density functions of \(Y, \, Z\) and \(W\) are

$$\begin{aligned} f_{Y} (y) & = \varPi \left( {\sqrt {2\tilde{C}} \hat{R}_{\text{BOC,ref1}} \left( {{d \mathord{\left/ {\vphantom {d 2}} \right. \kern-0pt} 2}} \right),\frac{{N_{0} }}{{T_{\text{P}} }}\hat{R}_{1,1} (0),y} \right)\quad ,y > 0 \\ f_{Z} (z) & = \varPi \left( {0,\frac{{N_{0} }}{{T_{\text{P}} }}\hat{R}_{1,1} (0),z} \right),\quad z > 0 \\ f_{W} (w) & = \varPi \left( {0,\frac{{N_{0} }}{{T_{\text{P}} }}\hat{R}_{1,1} (0),w} \right),\quad w > 0 \\ \end{aligned}$$
(34)

Based on a similar assumption with the derivation of PUDLL (Yao et al. 2010), the correlation coefficient between \(X^{2}\) and \(Y^{2}\) is approximately equal to

$$\rho_{{R_{\text{E}}^{2} R_{\text{L}}^{2} }} \approx {{\hat{R}_{1,1}^{2} \left( d \right)} \mathord{\left/ {\vphantom {{\hat{R}_{1,1}^{2} \left( d \right)} {\hat{R}_{1,1}^{2} (0)}}} \right. \kern-0pt} {\hat{R}_{1,1}^{2} (0)}}$$
(35)

Thus, the variance of discriminator V 1 is

$$\sigma_{{V_{1} }}^{2} = E\left[ {V_{1}^{2} } \right] \approx 2\left( {1 - \rho_{{R_{\text{E}}^{2} R_{\text{L}}^{2} }} } \right)\left( { \, E\left[ {X^{4} } \right] + E\left[ {Z^{4} } \right] - E^{2} \left[ {X^{2} } \right] - E^{2} \left[ {Z^{2} } \right]} \right)$$
(36)

where

$$E\left[ {X^{i} } \right] = \int_{0}^{\infty } {x^{i} f_{X} (x ) {\text{d}}x} ,\quad E\left[ {Z^{i} } \right] = \int_{0}^{\infty } {z^{i} f_{Z} (z){\text{d}}z}$$
(37)

Substituting (29) and (37) into (26), we can obtain the theoretical code tracking error variance of discriminator function V 1.

Discriminator function V 2

Similar to discriminator function V 1, the gain of discriminator function V 2 at \(\Delta \tau = 0\) is

$$K_{2} = 16\pi C\left( {\left( \begin{aligned} \int_{ - \infty }^{\infty } {H(f)f} G_{\text{BOC,ref1}} (f){ \sin }\left( {\pi fd} \right){\text{d}}f \hfill \\ \int_{ - \infty }^{\infty } {H(f)} G_{\text{B}} (f){ \cos }\left( {\pi fd} \right){\text{d}}f \hfill \\ \end{aligned} \right) + \left( \begin{aligned} \int_{ - \infty }^{\infty } {H(f)} G_{{{\text{BOC,ref}}1}} \left( f \right){ \cos }\left( {\pi fd} \right){\text{d}}f \hfill \\ \int_{ - \infty }^{\infty } {H(f)fG_{\text{B}} (f){ \sin }\left( {\pi fd} \right)} {\text{d}}f \hfill \\ \end{aligned} \right)} \right)$$
(38)

where \(G_{\text{B}} (f) = \mathcal{F}\left\{ {R_{\text{B}} (\varepsilon } \right\}\) is the power spectral density of the BOC signal. Equation (38) provides the discriminator gain under bandwidth limitation, which is different with the one in the case of infinite bandwidth. Let

$$\begin{aligned} X_{\text{IE}} & = {\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} + \left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right| \\ X_{\text{IL}} & = {\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} + \left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right| \\ X_{\text{QE}} & = {\text{QE}}_{\text{BOC}} \cdot {\text{QE}}_{1} + \left| {{\text{QE}}_{\text{BOC}} \cdot {\text{QE}}_{2} } \right| \\ X_{\text{QL}} & = {\text{QL}}_{\text{BOC}} \cdot {\text{QL}}_{1} + \left| {{\text{QL}}_{\text{BOC}} \cdot {\text{QL}}_{2} } \right| \\ \end{aligned}$$
(39)

then \(V_{2} = \left( {X_{\text{IE}} - X_{\text{IL}} } \right) + \left( {X_{\text{QE}} - X_{\text{QL}} } \right)\). Obviously,

$$\begin{aligned} &E\left[ {V_{2} } \right] = 0 \hfill \\ &E\left[ {\left( {X_{\text{IE}} - X_{\text{IL}} } \right) \cdot \left( {X_{\text{QE}} - X_{\text{QL}} } \right)} \right] = 0 \hfill \\ &\sigma_{{V_{2} }}^{2} = E\left[ {V_{2}^{2} } \right] = E\left[ {\left( {X_{\text{IE}} - X_{\text{IL}} } \right)^{2} } \right] + E\left[ {\left( {X_{\text{QE}} - X_{\text{QL}} } \right)^{2} } \right] \hfill \\ \end{aligned}$$
(40)

The first part of \(\sigma_{{V_{2} }}^{2}\) is expanded to

$$\begin{aligned} E\left[ {\left( {X_{\text{IE}} - X_{\text{IL}} } \right)^{2} } \right] & = E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right)^{2} } \right] + E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right)^{2} } \right] + 2E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} \cdot \left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right|} \right] \\ & \quad + E\left[ {\left( {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} } \right)^{2} } \right] + E\left[ {\left( {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right)^{2} } \right] + 2E\left[ {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} \left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right|} \right] \\ &\quad - 2\left( \begin{aligned} E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} \cdot {\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} } \right] + E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} \left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right|} \right] \hfill \\ + E\left[ {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} \left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right|} \right] + E\left[ {\left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right|\left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right|} \right] \hfill \\ \end{aligned} \right) \\ \end{aligned}$$
(41)

Considering that the correlator outputs of I-branch follow the joint Gaussian distribution, we take the following approximation,

$$\begin{aligned} & E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right)^{2} } \right] = E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right)^{2} } \right] = E\left[ {\left( {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} } \right)^{2} } \right] = E\left[ {\left( {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right)^{2} } \right] \hfill \\ & E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} \left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right|} \right] = E\left[ {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} \left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right|} \right] \approx E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} \cdot \left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right|} \right] = E\left[ {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} \left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right|} \right] \hfill \\ & E\left[ {\left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right|\left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right|} \right] \approx E\left[ {\left| {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right|} \right]E\left[ {\left| {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right|} \right] \approx \sqrt {E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right)^{2} } \right]E\left[ {\left( {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{2} } \right)^{2} } \right]} = E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{2} } \right)^{2} } \right] \hfill \\ & E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} \cdot {\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} } \right] \approx E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right]E\left[ {{\text{IL}}_{\text{BOC}} \cdot {\text{IL}}_{1} } \right] = \left( {E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right]} \right)^{2} \, \hfill \\ \end{aligned}$$
(42)

then we have

$$E\left[ {\left( {X_{\text{IE}} - X_{\text{IL}} } \right)^{2} } \right] = 2\left( {E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right)^{2} } \right] - \left( {E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right]} \right)^{2} } \right)$$
(43)

Equation (43) can be calculated by the characteristic function of joint Gaussian distribution, namely

$$\begin{aligned} E\left[ {\left( {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right)^{2} } \right] & = \left( {1 + 2\rho^{2} } \right)\sigma^{4} + \left( {\mu_{1}^{2} + \mu_{2}^{2} + 4\mu_{1} \mu_{2} \rho } \right)\sigma^{2} + \mu_{1}^{2} \mu_{2}^{2} \\ \left( {E\left[ {{\text{IE}}_{\text{BOC}} \cdot {\text{IE}}_{1} } \right]} \right)^{2} & = \left( {\mu_{1} \mu_{2} + \rho \sigma^{2} } \right)^{2} \\ E\left[ {\left( {X_{\text{IE}} - X_{\text{IL}} } \right)^{2} } \right] & = 2\left( {\left( {1 + \rho^{2} } \right)\sigma^{4} + \left( {\mu_{1}^{2} + \mu_{2}^{2} + 2\mu_{1} \mu_{2} \rho } \right)\sigma^{2} } \right) \\ \end{aligned}$$
(44)

where \(\mu_{1} = \sqrt {2C} \hat{R}_{\text{BOC,ref1}} \left( \frac{d}{2} \right),\quad \, \mu_{2} = \sqrt {2C} \hat{R}_{\text{B}} \left( \frac{d}{2} \right)\), \(\rho = \frac{{\hat{R}_{\text{BOC,ref1}} \left( 0 \right)}}{{\hat{R}_{1,1} \left( 0 \right)}}\), \(\sigma^{2} = \frac{{N_{0} }}{{T_{\text{p}} }}\hat{R}_{1,1} \left( 0 \right)\).

In a similar way, the second part of \(\sigma_{{V_{2} }}^{2}\) is

$$E\left[ {\left( {X_{\text{QE}} - X_{\text{QL}} } \right)^{2} } \right] = 2\left( {1 + \rho^{2} } \right)\sigma^{4}$$
(45)

Using (40), (44) and (45), the variance of discriminator V 2 output can be approximately expressed as

$$\sigma_{2}^{2} = 2\left( {\left( {2 + 2\rho^{2} } \right)\sigma^{4} + \left( {\mu_{1}^{2} + \mu_{2}^{2} + 2\mu_{1} \mu_{2} \rho } \right)\sigma^{2} } \right)$$
(46)

Substituting (38) and (46) into (26), we obtain the theoretical code tracking error variance of discriminator function V 2.

The code tracking error variance of DET

The two dimensional correlation function of DET in the case of infinite bandwidth is (Hodgart et al. 2007)

$$\chi \left( {\Delta \tau ,\Delta \tau^{ * } } \right) \approx \text{trc} \left( {\Delta \tau^{ * } } \right)\varLambda \left( {\Delta \tau } \right)$$
(47)

where \(\Delta \tau\) is the estimation error of code delay in DLL, \(\Delta \tau^{ * }\) is the estimation error of subcarrier delay in SLL, \(\varLambda \left( \varepsilon \right) = 1 - \frac{\left| \varepsilon \right|}{{T_{\text{c}} }}\) is the ACF of BPSK signal, and \(\text{trc} ()\) is a continuous triangular cosine of periodicity 2T s. Considering the effect of bandwidth limitation, Eq. (47) is rewritten as

$$\chi \left( {\Delta \tau ,\Delta \tau^{ * } } \right) \approx \text{t} \hat{r}c\left( {\Delta \tau^{ * } } \right)\hat{\varLambda }\left( {\Delta \tau } \right)$$
(48)

where \(\hat{\varLambda }\left( \varepsilon \right) = \mathcal{F}^{ - 1} \left\{ {G_{\varLambda } \left( f \right)H\left( f \right)} \right\}\), and \(G_{\varLambda } \left( f \right) = \mathcal{F}\left\{ {\varLambda \left( \varepsilon \right)} \right\}\). \(\text{t} \hat{r}c\left( \varepsilon \right) = \frac{8}{{\pi^{2} }}{ \cos }\left( {\frac{\pi \varepsilon }{{T_{\text{s}} }}} \right)\).

The code tracking performance of DET is mainly determined by the SLL. The E and L correlator outputs of in-phased and quadrature-phase branches in SLL are

$$\begin{aligned}{\text{IE}} \approx \sqrt {2C}{\text{t}\hat{\hbox{r}}\text{c}}\left( {\Delta \tau^{ * } - {d \left/{\vphantom {d 2}} \right. 2}} \right)\hat{\varLambda}\left( {\Delta \tau } \right){ \cos }\left( {\Delta \theta }\right) + n_{\text{IE}} \\ {\text{IL}} \approx \sqrt {2C}{\text{t}\hat{\hbox{r}}\text{c}}\left( {\Delta \tau^{ * } + {d \left/{\vphantom {d 2}} \right. } 2} \right)\hat{\varLambda}\left( {\Delta \tau } \right){ \cos }\left( {\Delta \theta }\right) + n_{\text{IL}} \hfill \\ {\text{QE}} \approx \sqrt {2C}{\text{t}\hat{\hbox{r}}\text{c}}\left( \Delta \tau^{ * } - d \left/{\vphantom {d 2}} \right. 2 \right)\hat{\varLambda}\left( {\Delta \tau } \right){ \sin }\left( {\Delta \theta }\right) + n_{\text{QE}} \hfill \\ {\text{QL}} \approx \sqrt {2C}{\text{t}\hat{\hbox{r}}\text{c}}\left( {\Delta \tau^{ * } + {d \left/{\vphantom {d 2}} \right. 2}} \right)\hat{\varLambda}\left( {\Delta \tau } \right){ \sin }\left( {\Delta \theta }\right) + n_{\text{QL}} \hfill \\ \end{aligned}$$
(49)

where these noise terms \(n_{\text{IE}}\), \(n_{\text{IL}}\), \(n_{\text{QE}}\) and \(n_{\text{QL}}\) satisfy Gaussian process with zero mean and variance \(\frac{{N_{0} }}{{T_{\text{p}} }}\text{t} \hat{r}c\left( 0 \right)\hat{\varLambda }\left( 0 \right)\).\(E\left[ {n_{\text{IE}} n_{\text{IL}} } \right] = E\left[ {n_{\text{QE}} n_{\text{QL}} } \right] = \frac{{N_{0} }}{{T_{\text{p}} }}\text{t} \hat{r}c\left( 0 \right)\hat{\varLambda }\left( d \right)\).

The discriminator output of SLL is

$$V\left( {\Delta \tau^{ * } } \right) = \left( {{\text{IE}}^{2} + {\text{QE}}^{2} } \right) - \left( {{\text{IL}}^{2} + {\text{QL}}^{2} } \right)$$
(50)

Assume that the code delay has been accurately estimated by the DLL, i.e. \(\Delta \tau \approx 0\) and \(\Delta \theta \approx 0\), then

$$\begin{aligned} V\left( {\Delta \tau^{ * } } \right) & =2C\hat{\varLambda }^{2} \left( 0 \right)\left({{\text{t}\hat{\hbox{r}}\text{c}}^{2} \left( {\Delta \tau^{ * } - {d{\left/ {\vphantom {d 2}} \right. } 2}} \right) -{\text{t}\hat{\hbox{r}}\text{c}}^{2} \left( {\Delta \tau^{ * } + {d {\left/{\vphantom {d 2}} \right. } 2}} \right)} \right) \\ & \quad + 2\sqrt{2C} \hat{\varLambda }\left( 0 \right)\left({\text{t}\hat{\hbox{r}}c}\left( {\Delta \tau^{ * } - {d {\left/ {\vphantom{d 2}} \right. } 2}} \right)n_{\text{IE}} -{\text{t}\hat{\hbox{r}\text{c}}\left( {\Delta \tau^{ * } + {d{\left/ {\vphantom {d 2}} \right. } 2}} \right)n_{\text{IL}} }\right) \\ &\quad + \left( {n_{\text{IE}}^{2} - n_{\text{IL}}^{2} }\right) + n_{\text{QE}}^{2} - n_{\text{QL}}^{2} \\ \end{aligned}$$
(51)

The discriminator gain at \(\Delta \tau^{ * } = 0\) is

$$K = \left. {\frac{{{\text{d}}V}}{{{\text{d}}\Delta \tau^{ * } }}} \right|_{{\Delta \tau^{ * } = 0}} = \frac{{2^{8} C\hat{\varLambda }^{2} \left( 0 \right)}}{{\pi^{3} T_{\text{s}} }}{ \sin }\frac{\pi d}{{T_{\text{s}} }}$$
(52)

Due to \(\Delta \tau^{ * } \approx 0\), the noise part in (52) is

$$n \approx 2\sqrt {2C} \hat{\varLambda }\left( 0\right){\text{t}\hat{\hbox{r}}\text{c}}\left( {{d \left/ {\vphantom {d 2}}\right. 2}} \right)\left( {n_{\text{IE}} - n_{\text{IL}} } \right)+ \left( {n_{\text{IE}}^{2} - n_{\text{IL}}^{2} } \right) +n_{\text{QE}}^{2} - n_{\text{QL}}^{2}$$
(53)

The variance of discriminator function V is given by

$$\sigma_{V}^{2} = \frac{{2^{8} CN_{0} }}{{\pi^{4} T_{\text{p}} }}{ \sin }^{2} \left( {\frac{{\pi d_{{T_{\text{s}} }} }}{{T_{\text{s}} }}} \right)\hat{\varLambda }^{2} \left( 0 \right)\left( {\frac{{16\hat{\varLambda }\left( 0 \right)}}{{\pi^{2} }} + \frac{1}{{T_{\text{p}} {C \mathord{\left/ {\vphantom {C {N_{0} }}} \right. \kern-0pt} {N_{0} }}}}} \right)$$
(54)

Substituting (52) and (54) into (26), we have

$$\sigma_{\text{DET}}^{2} = \frac{{B_{\text{L}} \left( {1 - 0.5B_{\text{L}} T_{\text{P}} } \right)T_{\text{s}}^{2} \left( {\frac{{16\hat{\varLambda }\left( 0 \right)}}{{\pi^{2} }} + \frac{1}{{T_{\text{p}} {C \mathord{\left/ {\vphantom {C {N_{0} }}} \right. \kern-0pt} {N_{0} }}}}} \right)}}{{\frac{{2^{7} \hat{\varLambda }^{2} \left( 0 \right)}}{{\pi^{2} }}{C \mathord{\left/ {\vphantom {C {N_{0} }}} \right. \kern-0pt} {N_{0} }}}}$$
(55)

(55) is established based on the assumption that the estimation error of code delay in DLL is close to zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Wei, J., Tang, Z. et al. Unambiguous combined correlation functions for sine-BOC signal tracking. GPS Solut 19, 623–638 (2015). https://doi.org/10.1007/s10291-014-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0420-6

Keywords

Navigation