Skip to main content
Log in

Effectiveness of observation-domain sidereal filtering for GPS precise point positioning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

An Erratum to this article was published on 15 August 2015

Abstract

Sidereal filtering is a technique used to reduce errors caused by multipath in the positioning of static receivers via the Global Positioning System (GPS). It relies upon the receiver and its surrounding environment remaining static from one day to the next and takes advantage of the approximately sidereal repeat time of the GPS constellation geometry. The repeating multipath error can thus be identified, usually in the position domain, and largely removed from the following day. We describe an observation-domain sidereal filter algorithm that operates on undifferenced ionospheric-free GPS carrier phase measurements to reduce errors caused by multipath. It is applied in the context of high-rate (1 Hz) precise point positioning of a static receiver. An observation-domain sidereal filter (ODSF) is able to account for the slightly different repeat times of each GPS satellite, unlike a position-domain sidereal filter (PDSF), and can hence be more effective at reducing high-frequency multipath error. Using 8-h long datasets of GPS measurements from two different receivers with different antenna types and contrasting environments, the ODSF algorithm is shown overall to yield a position time series 5–10 % more stable, in terms of Allan deviation, than a PDSF over nearly all time intervals below about 200 s in length. This may be particularly useful for earthquake and tsunami early warning systems where the accurate measurement of small displacements of the ground over the period of just a few minutes is crucial. However, the sidereal filters are also applied to a third dataset during which two short episodes of particularly high-frequency multipath error were identified. These two periods are analyzed in detail and illustrate the limitations of using sidereal filters with important implications for other methods of correcting for multipath at the observation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnew DC, Larson KM (2007) Finding the repeat times of the GPS constellation. GPS Solut 11:71–76. doi:10.1007/s10291-006-0038-4

    Article  Google Scholar 

  • Allan DW (1966) Statistics of atomic frequency standards. Proc IEEE 54:221–230. doi:10.1109/PROC.1966.4634

    Article  Google Scholar 

  • Axelrad P, Larson KM, Jones B (2005) Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors. In: Proceedings of ION GNSS 2005, Inst. Navig. Long Beach, CA, pp 2638–2648

  • Bilich A, Larson KM (2008) Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Sci 42:RS6003. doi:10.1029/2007RS003652

    Google Scholar 

  • Bilich AL, Cassidy JF, Larson KM (2008) GPS seismology: application to the 2002 Mw 7.9 Denali Fault earthquake. Bull Seismol Soc Am 98:593–606. doi:10.1785/0120070096

    Article  Google Scholar 

  • Bock Y (1991) Continuous monitoring of crustal deformation. GPS World 2:40–47

    Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Choi K, Bilich AL, Larson KM, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31:L22608. doi:10.1029/2004GL021621

    Article  Google Scholar 

  • Collins JP (1999) Assessment and development of a tropospheric delay model for aircraft users of the global positioning system. Dissertation. University of New Brunswick, New Brunswick

    Google Scholar 

  • IERS Conventions (2010) In: Petit G, Luzum B (eds) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, IERS Technical Note 36, pp 179. ISBN:3-89888-989-6. http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html

  • Dach R, Brockmann E, Schaer S et al (2009) GNSS processing at CODE: status report. J Geod 83:353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  • Elósegui P, Davis JL, Oberlander D et al (2006) Accuracy of high-rate GPS for seismology. Geophys Res Lett 33:L11308. doi:10.1029/2006GL026065

    Article  Google Scholar 

  • Ferre-Pikal ES, Walls FL (2005) Frequency standards, characterization. Encycl RF Microw Eng. doi:10.1002/0471654507

    Google Scholar 

  • Friederichs T (2010) Analysis of geodetic time series using Allan variances. Dissertation. University of Stuttgart, Stuttgart

    Google Scholar 

  • Fuhrmann T, Luo X, Knöpfler A, Mayer M (2014) Generating statistically robust multipath stacking maps using congruent cells. GPS Solut 19:83–92. doi:10.1007/s10291-014-0367-7

    Article  Google Scholar 

  • Geng J, Bock Y, Melgar D et al (2013) A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: implications for earthquake early warning. Geochem Geophys Geosystems. doi:10.1002/ggge.20144

    Google Scholar 

  • Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the global positioning system. J Geophys Res 97:3261–3269. doi:10.1029/91JB02997

    Article  Google Scholar 

  • Granström C (2006) Site-dependent effects in high-accuracy applications of GNSS. Technical Report L-Department of Radio and Space Science. Chalmers University of Technology, Göteborg, Sweden. http://publications.lib.chalmers.se/publication/21268-site-dependenteffects-in-high-accuracy-applications-of-gnss

  • Groves PD (2013) Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd edn. Artech House, London

    Google Scholar 

  • Harris RB (2002) Evaluation, refinement and fusion of software-based pseudorange multipath mitigation techniques. In: Proceedings of the ION GNSS Meeting 2002, Inst. Navig. Portland, OR, pp 460–471

  • Hung H-K, Rau R-J (2013) Surface waves of the 2011 Tohoku earthquake: observations of Taiwan’s dense high-rate GPS network. J Geophys Res Solid Earth 118:332–345. doi:10.1029/2012JB009689

    Article  Google Scholar 

  • Kouba J (2009) A guide to using International GNSS Service (IGS) products. https://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf. Accessed 16 June 2015

  • Langbein J (2004) High-rate real-time GPS network at Parkfield: utility for detecting fault slip and seismic displacements. Geophys Res Lett 13:L15S20. doi:10.1029/2003GL019408

    Google Scholar 

  • Larson KM, Bilich A, Axelrad P (2007) Improving the precision of high-rate GPS. J Geophys Res Solid Earth 112:B05422. doi:10.1029/2006JB004367

    Google Scholar 

  • Lau L (2012) Comparison of measurement and position domain multipath filtering techniques with the repeatable GPS orbits for static antennas. Surv Rev 44:9–16. doi:10.1179/1752270611Y.0000000003

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Misra P, Enge P (2001) Global Positioning System: signals, measurements, and performance, 1st edn. Ganga-Jamuna Press, Lincoln

    Google Scholar 

  • Moore M, Watson CS, King MA et al (2014) Empirical modelling of site-specific errors in continuous GPS data. J Geod 88:887–900. doi:10.1007/s00190-014-0729-5

    Article  Google Scholar 

  • Ragheb AE, Clarke PJ, Edwards SJ (2007) GPS sidereal filtering: coordinate- and carrier-phase-level strategies. J Geod 81:325–335. doi:10.1007/s00190-006-0113-1

    Article  Google Scholar 

  • Reuveni Y, Kedar S, Owen SE et al (2012) Improving sub-daily strain estimates using GPS measurements. Geophys Res Lett 39:L11311. doi:10.1029/2012GL051927

    Article  Google Scholar 

  • Riley WJ (2008) Handbook of frequency stability analysis. National Institute of Standards and Technology, Boulder

    Book  Google Scholar 

  • Shi J (2012) Precise point positioning integer ambiguity resolution with decoupled clocks. University of Calgary, Thesis

    Google Scholar 

  • Takasu T (2006) High-rate precise point positioning: observation of crustal deformation by using 1-Hz GPS data. In: GPS/GNSS Symposium, Tokyo

  • Wanninger L, May M (2000) Carrier phase multipath calibration of GPS reference stations. In: Proceedings of ION GPS 2000, Inst Navig. Salt Lake City, UT, pp 113–124

  • Wu JT, Wu SC, Hajj GA et al (1993) Effects of antenna orientation on GPS carrier phase measurements. Manuscr Geod 18:91–98

    Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Leica Geosystems UK and the UNAVCO Plate Boundary Observatory for access to GPS data and Dr. Paul Groves for his useful comments. This research is a result of collaboration between University College London (UCL) and the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET+). This research is funded by a scholarship from UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Atkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkins, C., Ziebart, M. Effectiveness of observation-domain sidereal filtering for GPS precise point positioning. GPS Solut 20, 111–122 (2016). https://doi.org/10.1007/s10291-015-0473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0473-1

Keywords

Navigation