Skip to main content
Log in

BS-ACEBOC: a generalized low-complexity dual-frequency constant-envelope multiplexing modulation for GNSS

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

In order to satisfy the need for combining signals in a constant-envelope modulation, we propose a new dual-frequency constant-envelope modulation (DCEM), called asymmetric constant-envelope binary offset carrier multiplexing modulation with bipolar subcarrier (BS-ACEBOC). It can combine up to four signal components from two separate sidebands with low complexity and an arbitrary power ratio between signal components. We briefly introduce the design principles and address the construction method of the BS-ACEBOC. The high flexibility of the proposed method is proven, and several special cases for practical applications are presented. The complexity comparison for the signal generation shows that the computational requirements of BS-ACEBOC are significantly lower than that of other DCEMs. Finally, the performance of BS-ACEBOC is analyzed. With low complexity and high flexibility, BS-ACEBOC is a promising solution for signal design of global navigation satellite systems including Beidou Phase III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Butman S, Timor U (1972) Interplex–an efficient multichannel PSK/PM telemetry system. IEEE Trans Commun 20:415–419

    Article  Google Scholar 

  • Dafesh P, Cahn C (2009) Phase-optimized constant-envelope transmission (POCET) modulation method for GNSS signals. Proceeding of ION GNSS 2009, Institute of Navigation, Savannah, GA, September, pp 2860–2866

  • Dafesh P, Nguyen T, Lazar S (1999) Coherent adaptive subcarrier modulation (CASM) for GPS modernization. Proceedings of ION NTM 1999, Institute of Navigation, San Diego, CA, January, pp 649–660

  • Galileo I (2008) Galileo open service, signal in space interface control document (OS SIS ICD). European space agency/European GNSS supervisory authority

  • Hegarty C, Betz JW, Saidi A (2004) Binary coded symbol modulations for GNSS. Proceedings of ION AM 2004, Institute of Navigation, Dayton, OH, June, pp 56–64

  • Lestarquit L, Artaud G, Issler J-L (2008) AltBOC for dummies or everything you always wanted to know about AltBOC. Proceedings of ION GNSS 2008, Institute of Navigation, Savannah, GA, September, pp 961–970

  • Nations U (2010) Current and planned global and regional navigation satellite systems and satellite-based augmentations systems. Proceedings of ICG 2010, Turin, Italy, October, pp 15–40

  • Orr RS (1998) Code multiplexing via majority logic for GPS modernization. Proceedings of ION GPS 1998, Institute of Navigation, 1998. Nashville, TN, September, pp 265–273

  • Shivaramaiah NC, Dempster AG, Rizos C (2013) Time-multiplexed offset-carrier QPSK for GNSS. IEEE Trans Aerosp Electron Syst 49:1119–1138

    Article  Google Scholar 

  • Soellner M, Erhard P (2003) Comparison of AWGN code tracking accuracy for Alternative-BOC, Complex-LOC and Complex-BOC modulation options in Galileo E5-Band. Proceedings of ENC GNSS 2003, European Navigation Conference, Graz, Austria, April

  • Tang Z, Zhou H, Wei J, Yan T, Liu Y, Ran Y, Zhou Y (2011) TD-AltBOC: a new COMPASS B2 modulation, Science China Physics. Mechan Astron 54:1014–1021

    Article  Google Scholar 

  • Tawk Y, Botteron C, Jovanovic A, Farine P-A (2012) Analysis of Galileo E5 and E5ab code tracking. GPS Solut 16(2):243–258

    Article  Google Scholar 

  • Wang G, Lin V, Fan T, Maine K, Dafesh P, Myers B (2004) Study of signal combining methodologies for GPS III’s flexible navigation payload. Proceedings of ION GNSS 2004, Institute of Navigation, Long Beach, CA, September, pp 2207–2218

  • Yao Z, Lu M (2012) Dual-frequency constant envelope multiplex with non-equal power allocation for GNSS. Electron Lett 48:1624–1625

    Article  Google Scholar 

  • Yao Z, Lu M (2013) Constant envelope combination for components on different carrier frequencies with unequal power allocation. Proceedings of ION ITM 2013, Institute of Navigation, San Diego, CA, January, pp 629–637

  • Zhang J, Yao Z, Lu M (2014) Applications and Low-complex implementations of ACE-BOC multiplexing proceedings of ION ITM 2014, Institute of Navigation, San Diego, CA, January, pp 781–791

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Yao.

Appendix: The PSD of BS-ACEBOC([1, β 2, 1, β 2])

Appendix: The PSD of BS-ACEBOC([1, β 2, 1, β 2])

Under the assumption that the signal is stationary in wide sense and that the PRN codes have ideal correlation characteristics, the products of signal components can also be regarded as spreading signals. The autocorrelation function of BS-ACEBOC can be shown as

$${\mathcal{R}}_{{\text{BS-ACEBOC} }} (\tau ) = \left\{ \begin{aligned} {\mathcal{R}}_{{{\text{UI}},\tilde{\gamma }_{sc,\text{U}} }} (\tau ) + \beta^2 {\mathcal{R}}_{{{\text{UQ}},\tilde{\gamma }_{sc,\text{U}} }} (\tau ) + {\mathcal{R}}_{{{\text{LI}},\tilde{\gamma }_{sc,\text{L}} }} (\tau ) + \beta^4 {\mathcal{R}}_{{{\text{LQ}},\tilde{\gamma }_{sc,\text{L}} }} (\tau ) + \\ \beta^{4} {\bar{\mathcal{R}}}_{{{\text{UI}},\tilde{\gamma }_{sc,\text{U}} }} (\tau ) + \beta^2 {\bar{\mathcal{R}}}_{{{\text{UQ}},\tilde{\gamma }_{sc,\text{U}} }} (\tau ) + \beta^{4} {\bar{\mathcal{R}}}_{{{\text{LI}},\tilde{\gamma }_{sc,\text{L}} }} (\tau ) + \beta^2 {\bar{\mathcal{R}}}_{{{\text{LQ}},\tilde{\gamma }_{sc,\text{L}} }} (\tau ) \\ \end{aligned} \right.$$
(40)

where \({\mathcal{R}}_{{m,\tilde{\gamma }_{sc,n} }} (\tau )\) and \({\bar{\mathcal{R}}}_{{p,\tilde{\gamma }_{sc,q} }} (\tau )\) stand for the autocorrelation function (ACF) of \(b_{m} (t) \cdot \tilde{\gamma }_{sc,n} (t)\) and \(\bar{b}_{p} (t) \cdot \tilde{\gamma }_{sc,q} (t)\), respectively, with mp ∊ {UI, UQ, LI, LQ} and nq ∊ {U, I}.

Since all the signal components are BPSK-R(n) modulated with the same code rate, the ACF of BS-ACEBOC \(([1,\beta^{2} ,1,\beta^{2} ])\) can be simplified as

$${\mathcal{R}}_{{\text{BS - ACEBOC}}} (\tau ) = 2\left( {1 + 2\beta^2 + \beta^{4} } \right)\left[ {{\mathcal{R}}_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (\tau ) + {\mathcal{R}}_{{{\text{LI}},\tilde{\gamma }_{{sc,{\text{L}}}} }} (\tau )} \right]$$
(41)

and the corresponding PSD can be obtained via the Fourier transforms (FT) of \({\mathcal{R}}_{{\text{BS - ACEBOC}}} (\tau )\), which is

$$G_{{\text{BS - ACEBOC}}} (f) = 2\left( {1 + 2\beta^2 + \beta^{4} } \right)\left[ {G_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (f) + G_{{{\text{LI}},\tilde{\gamma }_{{sc,{\text{L}}}} }} (f)} \right]$$
(42)

where \(G_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (f)\) and \(G_{{{\text{LI}},\tilde{\gamma }_{{sc,{\text{L}}}} }} (f)\) are the FTs of \({\mathcal{R}}_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (\tau )\) and \({\mathcal{R}}_{{{\text{LI}},\tilde{\gamma }_{{sc,{\text{L}}}} }} (\tau )\), respectively.

Note that the upper sideband complex subcarrier piecewise can be expressed as

$$\tilde{\gamma }_{{sc,{\text{U}}}} (t) = \sum\limits_{k = 0}^{\varPhi - 1} {( - 1)^{k} \mu_{{T_{s} /2}} \left( {t - k\frac{{T_{s} }}{2}} \right)}$$
(43)

where

$${\mu _{{T_s}/2}}\left( t \right) = \left\{ {\begin{array}{ll}{1 + {\mathop{\rm j}\nolimits} }&{\left[ {0,\frac{{{T_s}}}{4}} \right)}\\ { - 1 + {\mathop{\rm j}\nolimits} }&{\left[ {\frac{{{T_s}}}{4},\frac{{{T_s}}}{2}} \right)} \end{array}} \right.$$
(44)

The FT of \(\tilde{\gamma }_{{sc,{\text{U}}}} (t)\) is

$$\tilde{\varGamma }_{{sc,{\text{U}}}} (f) = \frac{{\text{e}^{{ - \text{j} \pi f\frac{{T_{s} }}{2}}} }}{{2\text{j} \pi f}}\left\{ {2\cos \left( {\pi f\frac{{T_{s} }}{2}} \right) - 2\sin \left( {\pi f\frac{{T_{s} }}{2}} \right) - 2} \right\}\sum\limits_{k = 0}^{\varPhi - 1} {( - 1)^{k} \text{e}^{{ - \text{j} \pi fkT_{s} }} }$$
(45)

Thus, \(G_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (f)\) can be expressed as

$$G_{{s,\tilde{\gamma }_{{sc,{\text{U}}}} }} (f) = f_{c} \left| {\tilde{\varGamma }_{{sc,{\text{U}}}} (f)} \right|^{2} = \frac{{f_{c} }}{{\pi^{2} f^{2} }}\left\{ {\cos \left( {\pi f\frac{{T_{s} }}{2}} \right) - \sin \left( {\pi f\frac{{T_{s} }}{2}} \right) - 1} \right\}^{2} \left\| {\sum\limits_{k = 0}^{\varPhi - 1} {( - 1)^{k} \text{e}^{{ - \text{j} \pi fkT_{s} }} } } \right\|^{2}$$
(46)

where \(\varPhi = 2f_{s} /f_{c}\). It is easy to recognize that the value of \(G_{{s,\tilde{\gamma }_{{sc,{\text{U}}}} }} (f)\) will be different depending on whether \(\varPhi\) is even or odd. If \(\varPhi\) is even, \(G_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (f)\) can be further simplified as

$$G_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (f) = \frac{{f_{c} }}{{\pi^{2} f^{2} }}\left\{ {\cos \left( {\pi f\frac{{T_{s} }}{2}} \right) - \sin \left( {\pi f\frac{{T_{s} }}{2}} \right) - 1} \right\}^{2} \frac{{\sin^{2} \left( {\frac{\pi f}{{f_{c} }}} \right)}}{{\cos^{2} \left( {\frac{\pi f}{{2f_{s} }}} \right)}}$$
(47)

while if \(\varPhi\) is odd, \(G_{{\text{UI}},\tilde{\gamma }_{\text{sc,U}} } (f)\) is

$$G_{{{\text{UI}},\tilde{\gamma }_{{sc,{\text{U}}}} }} (f) = \frac{{f_{c} }}{{\pi^{2} f^{2} }}\left\{ {\cos \left( {\pi f\frac{{T_{s} }}{2}} \right) - \sin \left( {\pi f\frac{{T_{s} }}{2}} \right) - 1} \right\}^{2} \frac{{\cos^{2} \left( {\frac{\pi f}{{f_{c} }}} \right)}}{{\cos^{2} \left( {\frac{\pi f}{{2f_{s} }}} \right)}}$$
(48)

In a similar way, it can be shown that \(G_{{{\text{LI}},\tilde{\gamma }_{sc,\text{L}} }} (f)\) can be expressed as

$$G_{{{\text{LI}},\tilde{\gamma }_{{sc,{\text{L}}}} }} (f) = \left| {\tilde{\gamma }_{{sc,{\text{L}}}} (f)} \right|^{2} = \left\{ \begin{aligned} \frac{{f_{c} }}{{\pi^{2} f^{2} }}\left[ {\cos \left( {\frac{\pi f}{{2f_{s} }}} \right){ + }\sin \left( {\frac{\pi f}{{2f_{s} }}} \right) - 1} \right]^{2} \frac{{\sin^{2} \left( {\frac{\pi f}{{f_{c} }}} \right)}}{{\cos^{2} \left( {\frac{\pi f}{{2f_{s} }}} \right)}}\quad \varPhi \,{\text{is}}\,{\text{even}} \hfill \\ \frac{{f_{c} }}{{\pi^{2} f^{2} }}\left[ {\cos \left( {\frac{\pi f}{{2f_{s} }}} \right){ + }\sin \left( {\frac{\pi f}{{2f_{s} }}} \right) - 1} \right]^{2} \frac{{\cos^{2} \left( {\frac{\pi f}{{f_{c} }}} \right)}}{{\cos^{2} \left( {\frac{\pi f}{{2f_{s} }}} \right)}}\quad \varPhi \,{\text{is}}\,{\text{odd}} \hfill \\ \end{aligned} \right.$$
(49)

Substituting (47), (48) and (49) into (42), we derive the PSD of BS-ACEBOC \(([1,\beta^{2} ,1,\beta^{2} ])\), which can be normalized as

$$G_{{\text{BS - ACEBOC}}} (f) = \left\{ \begin{aligned} \frac{{f_{c} }}{{\pi^{2} f^{2} }}\left[ {1 - \cos \left( {\frac{\pi f}{{2f_{s} }}} \right)} \right]\frac{{\sin^{2} \left( {\frac{\pi f}{{f_{c} }}} \right)}}{{\cos^{2} \left( {\frac{\pi f}{{2f_{s} }}} \right)}}\quad \varPhi \,{\text{is}}\,{\text{even}} \hfill \\ \frac{{f_{c} }}{{\pi^{2} f^{2} }}\left[ {1 - \cos \left( {\frac{\pi f}{{2f_{s} }}} \right)} \right]\frac{{\cos^{2} \left( {\frac{\pi f}{{f_{c} }}} \right)}}{{\cos^{2} \left( {\frac{\pi f}{{2f_{s} }}} \right)}}\quad \varPhi \,{\text{is}}\,{\text{odd}} \hfill \\ \end{aligned} \right.$$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Yao, Z. & Lu, M. BS-ACEBOC: a generalized low-complexity dual-frequency constant-envelope multiplexing modulation for GNSS. GPS Solut 21, 561–575 (2017). https://doi.org/10.1007/s10291-016-0547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0547-8

Keywords

Navigation