Skip to main content
Log in

Analysis of Galileo IOV + FOC signals and E5 RTK performance

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The current Galileo constellation in April 2017 comprises both in-orbit validation and full operational capability satellites transmitting signals on five frequencies, i.e., E1, E5a, E5b, E5, and E6. We analyze the power, multipath and noise of these signals using the data collected by four short baselines of various lengths and receiver/antenna types in Perth, Australia, as well as the Netherlands. In our analysis, the Galileo signals, except E5, show different relative noise and multipath performance for different receiver/antenna types. The E5 signal, with a weak dependency on the type of receiver/antenna, shows a significantly lower level of multipath and noise with respect to the other signals. Estimations of the E5 code standard deviation based on the data of each of the mentioned baselines gives a value of about 6 cm, which is further reduced to about 1 cm once the data are corrected for multipath. Due to the superior stochastic properties of E5 signal compared to the other Galileo signals, we further analyze the short-baseline real-time kinematic performance of the Galileo standalone E5 observations. Our findings confirm that the Galileo E5 data, if corrected for the multipath effect, can make (almost) instantaneous ambiguity resolution feasible already based on the current constellation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afifi A, El-Rabbany A (2014) Single frequency GPS/Galileo precise point positioning using un-differenced and between-satellite single difference measurements. GEOMATICA 68:195–205

    Article  Google Scholar 

  • Amiri-Simkooei AR, Teunissen PJG, Tiberius CCJM (2009) Application of least-squares variance component estimation to GPS observables. J Surv Eng 135(4):149–160

    Article  Google Scholar 

  • Bock Y (1991) Continuous monitoring of crustal deformation. GPS World 2(6):40–47

    Google Scholar 

  • Cai C, Luo X, Liu Z, Xiao Q (2014) Galileo signal and positioning performance analysis based on four IOV satellites. Navigation 67:810–824

    Article  Google Scholar 

  • Cai C, Gao Y, Pan L, Zhu J (2015) Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv Space Res 56:133–143

    Article  Google Scholar 

  • Cai C, He C, Santerre R, Pan L, Cui X, Zhu J (2016) A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Surv Rev 48:287–295

    Article  Google Scholar 

  • de Bakker PF, van der Marel H, Tiberius CC (2009) Geometry-free undifferenced, single and double differenced analysis of single frequency GPS, EGNOS and GIOVE-A/B measurements. GPS Solut 13(4):305–314

    Article  Google Scholar 

  • de Bakker PF, Tiberius CC, Van Der Marel H, van Bree RJ (2012) Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals. GPS solut 16(1):53–64

    Article  Google Scholar 

  • Diessongo TH, Schüler T, Junker S (2014) Precise position determination using a Galileo E5 single-frequency receiver. GPS Solut 18(1):73–83

    Article  Google Scholar 

  • EL-Hattab AI (2013) Influence of GPS antenna phase center variation on precise positioning. NRIAG J Astron Geophys 2:272–277

    Article  Google Scholar 

  • ESA (2016) Galileo fact sheet. http://esamultimedia.esa.int/docs/galileo/Galileo-factsheet-2016.pdf

  • Estey LH, Meertens CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 3(1):42–49

    Article  Google Scholar 

  • Euler HJ, Goad CC (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bull Geodes 65(2):130–143

    Article  Google Scholar 

  • European Union (2015) European GNSS (Galileo) open service signal in space interface control document, OS SIS ICD, Issue 1.2, Nov 2015

  • Gaglione S, Angrisano A, Castaldo G, Freda P, Gioia C, Innac A, Troisi S, Del Core G (2015) The first Galileo FOC satellites: from useless to essential. In: 2015 IEEE international on geoscience and remote sensing symposium (IGARSS), IEEE, pp 3667–3670. doi:10.1109/IGARSS.2015.732661814

  • Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the global positioning system. J Geophys Res 97:3261–3269

    Article  Google Scholar 

  • Gioia C, Borio D, Angrisano A, Gaglione S, Fortuny-Guasch J (2015) A Galileo IOV assessment: measurement and position domain. GPS Solut 19:187–199

    Article  Google Scholar 

  • GSA (2017) Galileo programme. https://www.gsc-europa.eu/galileo-gsc-overview/programme

  • Guo F, Li X, Zhang X, Wang J (2017) Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS multi-GNSS experiment (MGEX). Surv Rev 21:279–290

    Google Scholar 

  • Hauschild A, Montenbruck O, Sleewaegen JM, Huisman L, Teunissen PJ (2012) Characterization of compass M-1 signals. GPS Solut 16(1):117–126

    Article  Google Scholar 

  • Hellemans A (2014) A simple plumbing problem sent Galileo satellites into wrong orbits. http://spectrum.ieee.org/tech-talk/aerospace/satellites/a-simple-plumbing-problem-sent-galileo-satellites-into-wrong-orbits

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS-global navigation satellite systems, GPS, GLONASS, Galileo and more. Springer, Berlin

    Google Scholar 

  • Langley R (2014) ESA discusses Galileo satellite power loss, upcoming launch. http://gpsworld.com/esa-discusses-galileo-satellite-power-loss-upcoming-launch/. Published 20 Aug 2014

  • Langley RB, Banville S, Steigenberger P (2012) First results: precise positioning with Galileo prototype satellites. GPS World 23:45–49

    Google Scholar 

  • Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89:607–635

    Article  Google Scholar 

  • Liu T, Yuan Y, Zhang B, Wang N, Tan B, Chen Y (2017) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geod 91(3):253–268

    Article  Google Scholar 

  • Lou Y, Zheng F, Gu S, Wang C, Guo H, Feng Y (2016) Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut 20:849–862

    Article  Google Scholar 

  • Mader G (2002) GPS antenna calibration at the national geodetic survey. National Geodetic Survey, NOS, NOAA, Silver Spring, MD

  • Nadarajah N, Teunissen PJG (2014) Instantaneous GPS/Galileo/QZSS/SBAS attitude determination: a single-frequency (L1/E1) robustness analysis under constrained environments. Navigation 61(1):65–75

    Article  Google Scholar 

  • Nadarajah N, Teunissen PJG, Raziq N (2013) Instantaneous GPS–Galileo attitude determination: single-frequency performance in satellite-deprived environments. IEEE Trans Veh Technol 62(7):2963–2976

    Article  Google Scholar 

  • Nadarajah N, Khodabandeh A, Teunissen PJG (2015) Assessing the IRNSS L5-signal in combination with GPS, Galileo, and QZSS L5/E5a-signals for positioning and navigation. GPS Solut 20(2):289–297

    Article  Google Scholar 

  • Odijk D, Teunissen PJG, Huisman L (2012) First results of mixed GPS + GIOVE single-frequency RTK in Australia. J Spat Sci 57(1):3–18

    Article  Google Scholar 

  • Odijk D, Teunissen PJG, Khodabandeh A (2014) Galileo IOV RTK positioning: standalone and combined with GPS. Surv Rev 46:267–277

    Article  Google Scholar 

  • Odolinski R, Odijk D, Teunissen PJG (2015) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut 19:151–163

    Article  Google Scholar 

  • Pan L, Cai C, Santerre R, Zhang X (2017) Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Surv Rev. doi:10.1080/00396265.2016.1151628

    Google Scholar 

  • Simsky A, Sleewaegen JM, Hollreiser M, Crisci M (2006) Performance assessment of galileo ranging signals transmitted by GSTB-V2 satellites. In: Proceedings of ION GNSS 2006, Institute of Navigation, Fort Worth, TX, USA, 26–29 Sept, pp 1547–1559

  • Simsky A, Mertens D, Sleewaegen JM, Hollreiser M, Crisci M (2008a) Experimental results for the multipath performance of galileo signals transmitted by GIOVE—a satellite. Int J Navig Observ. doi:10.1155/2008/416380

    Google Scholar 

  • Simsky A, Sleewaegen JM, Wilde WD, Hollreiser M, Crisci M (2008b) Multipath and tracking performance of galileo ranging signals transmitted by GIOVE-B. In: Proceedings of ION GNSS 2008, Institute of Navigation, Savannah, Georgia, USA, 16–19 Sept, pp 1525–1536

  • Steigenberger P, Montenbruck O (2016) Galileo status: orbits, clocks, and positioning. GPS Solut 21(2):319–331

    Article  Google Scholar 

  • Steigenberger P, Hugentobler U, Montenbruck O (2013) First demonstration of Galileo-only positioning. GPS World 24:14–15

    Google Scholar 

  • Tegedor J, Øvstedal O, Vigen E (2014) Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. J Geod Sci 4:65–73

    Google Scholar 

  • Tegedor J, Øvstedal O, Vigen E (2015) Estimation of Galileo uncalibrated hardware delays for ambiguity-fixed precise point positioning. Navigation 63:173–179

    Article  Google Scholar 

  • Teunissen PJG (1998) Success probability of integer GPS ambiguity rounding and bootstrapping. J Geod 72(10):606–612

    Article  Google Scholar 

  • Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587–593

    Article  Google Scholar 

  • Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2):65–82

    Article  Google Scholar 

  • Teunissen PJG, Montenbruck O (eds) (2017) Springer handbook of global navigation satellite systems. Springer, Berlin

    Google Scholar 

  • Tranquilla JM, Cam JP, Al-Rizzo HM (1994) Analysis of a choke ring groundplane for multipath control in global positioning system (GPS) applications. IEEE Trans Antennas Propag 42(7):905–911

    Article  Google Scholar 

  • Verhagen S, Teunissen PJG (2014) Ambiguity resolution performance with GPS and BeiDou for LEO formation flying. Adv Space Res 54(5):830–839

    Article  Google Scholar 

  • Zaminpardaz S, Teunissen PJG, Nadarajah N (2016) GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solut 21(2):535–549

    Article  Google Scholar 

Download references

Acknowledgements

The second author is the recipient of an Australian Research Council (ARC) Federation Fellowship (Project Number FF0883188). The Netherlands data were provided by Mr. Lennard Huisman from Kadaster, the Netherlands. This support is greatly acknowledged. We are also thankful to Dr. Nandakumaran Nadarajah and Dr. Mohammad Choudhury from Curtin University GNSS Research Center, Perth, Australia, for providing the data of UWA0 station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safoora Zaminpardaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaminpardaz, S., Teunissen, P.J.G. Analysis of Galileo IOV + FOC signals and E5 RTK performance. GPS Solut 21, 1855–1870 (2017). https://doi.org/10.1007/s10291-017-0659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-017-0659-9

Keywords

Navigation