Skip to main content
Log in

A new troposphere tomography algorithm with a truncation factor model (TFM) for GNSS networks

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

For previous studies of global navigation satellite system (GNSS) troposphere tomography, only the GNSS observations derived from ground-based stations located inside the tomographic area were considered; however, stations distributed outside the area of interest in a dense regional network were neglected. This wastes valuable GNSS data and decreases the number of voxels traveled by satellite rays. This becomes the focus of this work, which tries to use GNSS receivers located outside the tomographic region to participate in the establishment of a tomographic observation equation. A new troposphere tomography algorithm is proposed with a truncation factor model (TFM), while the ability of the TFM to calculate the sectional slant water vapor inside the tomographic area, derived from the receivers outside this area, has been verified. The proposed algorithm is validated using the observed data collected over 31 days from the continuously operating reference system network of Zhejiang Province, China. At elevation angle masks of 10°, the number of satellite rays used has increased by 21.27% while the number of voxels transited by satellite rays has increased by 13.97% from 65.44 to 79.23% when adopting the TFM. The compared result of integrated water vapor with those from radiosonde data reveals that the RMS error and bias of the proposed algorithm are 4.1 mm and 0.06 mm, respectively, while those of the conventional method are 4.8 mm and − 0.34 mm, respectively. Water vapor profile comparison also shows that the RMS error and bias of the proposed algorithm are superior with average values of 1.17 g m−3 and 0.02 g m−3 to that of the conventional algorithm with values of 1.44 g m−3 and 0.03 g m−3, respectively. The PWV differences between tomography and GAMIT further indicate a good performance of the proposed algorithm with the values of RMS error and bias of 8.7 mm and 0.5 mm, respectively, while those of the traditional method are 12.6 mm and 0.9 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adeyemi B, Joerg S (2012) Analysis of water vapor over Nigeria using radiosonde and satellite data. J Appl Meteorol Climatol 51(51):1855–1866

    Article  Google Scholar 

  • Alshawaf F (2013) Constructing water vapor maps by fusing InSAR, GNSS and WRF data. Doctoral dissertation, Karlsruhe. Karlsruher Institut für Technologie (KIT)

  • Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22(3):379–386

    Article  Google Scholar 

  • Bender M, Raabe A (2007) A preconditions to ground based GPS water vapour tomography. Annales Geophysicae. European Geosciences Union 25(8):1727–1734

    Google Scholar 

  • Benevides P, Catalão J, Miranda PM (2014) Experimental GNSS tomography study in Lisbon (Portugal). Física de la Tierra 26:65–79

    Article  Google Scholar 

  • Benevides P, Nico G, Catalao J, Miranda P (2015a) Merging SAR interferometry and GPS tomography for high-resolution mapping of 3D tropospheric water vapour. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), pp 3607–3610

  • Benevides P, Catalao J, Nico G, Miranda PM (2015b) Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model. In: Proceedings of the SPIE 9640, remote sensing of clouds and the atmosphere XX, 96400R. https://doi.org/10.1117/12.2194857

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res Atmos 97(D14):15787–15801

    Article  Google Scholar 

  • Bi Y, Mao J, Li C (2006) Preliminary results of 4-D water vapor tomography in the troposphere using GPS. Adv Atmos Sci 23(4):551–560

    Article  Google Scholar 

  • Böhm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304

    Google Scholar 

  • Braun J, Rocken C, Meertens C, Ware R (1999) Development of a water vapor tomography system using low cost L1 GPS receivers. In: 9th ARM science team meeting proceedings, San Antonio, TX, vol, 2226, pp 22–26

  • Brenot H, Walpersdorf A, Reverdy M, Van Baelen J, Ducrocq V, Champollion C, Giroux P (2014) A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France). Atmos Meas Tech 7(2):553–578

    Article  Google Scholar 

  • Champollion C, Masson F, Bouin MN, Walpersdorf A, Doerflinger E, Bock O, Van Baelen J (2005) GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmos Res 74(1):253–274

    Article  Google Scholar 

  • Chen B, Liu Z (2014) Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J Geodesy 88(7):691–703

    Article  Google Scholar 

  • De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278

    Article  Google Scholar 

  • Elósegui P, Rius A, Davis JL, Ruffini G, Keihm S, Bürki B, Kruse LP (1998) An experiment for estimation of the spatial and temporal variations of water vapor using GPS data. Phys Chem Earth Parts A/B/C 23(1):125–130

    Article  Google Scholar 

  • Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. Ann Geophys 18(2):223–234

    Article  Google Scholar 

  • Herring TA, King RW, McClusky SC (2010) Documentation of the GAMIT GPS analysis software release 10.4. Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA

  • Heublein M, Zhu XX, Alshawaf F, Mayer M, Bamler R, Hinz S (2015) Compressive sensing for neutrospheric water vapor tomography using GNSS and InSAR observations. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), pp 5268–5271

  • Kacmarík M, Douša J, Dick G, Zus F, Brenot H, Möller G, Pottiaux E, Kapłon J, Hordyniec P, Václavovic P, Morel L (2017) Inter-technique validation of tropospheric slant total delays. Atmos Meas Tech 10(6):2183–2208

    Article  Google Scholar 

  • Liu Z, Man SW, Nichol J, Chan PW (2013) A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong. Int J Climatol 33(33):109–120

    Article  Google Scholar 

  • Mendes VB (1999) Modeling the neutral-atmosphere propagation delay in radiometric space technique, Ph.D. dissertation, University of New Brunswick, Fredericton, New Brunswick, Canada

  • Niell AE (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Technol 18(6):830–850

    Article  Google Scholar 

  • Nilsson T, Gradinarsky L (2006) Water vapor tomography using GPS phase observations: simulation results. IEEE Trans Geosci Remote Sens 44(10):2927–2941

    Article  Google Scholar 

  • Notarpietro R, Cucca M, Gabella M, Venuti G, Perona G (2011) Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks. Adv Space Res 47(5):898–912

    Article  Google Scholar 

  • Perler D, Geiger A, Hurter F (2011) 4D GPS water vapor tomography: new parameterized approaches. J Geodesy 85(8):539–550

    Article  Google Scholar 

  • Rius A, Ruffini G, Cucurull L (1997) Improving the vertical resolution of ionospheric tomography with GPS occultations. Geophys Res Lett 24(18):2291–2294

    Article  Google Scholar 

  • Rohm W (2013) The ground GNSS tomography—unconstrained approach. Adv Space Res 51(3):501–513

    Article  Google Scholar 

  • Rohm W, Bosy J (2009) Local tomography troposphere model over mountains area. Atmos Res 93(4):777–783

    Article  Google Scholar 

  • Rohm W, Bosy J (2011) The verification of GNSS tropospheric tomography model in a mountainous area. Adv Space Res 47(10):1721–1730

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The use of artificial satellites for geodesy, American Geophysical Union (AGU), vol 15, pp 247–251

    Chapter  Google Scholar 

  • Seko H, Shimada S, Nakamura H, Kato T (2000) 3-d distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front. Earth Planets Space 52(11):927–933

    Article  Google Scholar 

  • Skone S, Hoyle V (2005) Troposphere modeling in a regional GPS network. J Glob Position Syst 4:230–239

    Article  Google Scholar 

  • Troller MR (2004) GPS based determination of the integrated and spatially distributed water vapor in the troposphere. Doctoral dissertation, ETH, Zurich

  • Van Baelen J, Reverdy M, Tridon F, Labbouz L, Dick G, Bender M, Hagen M (2011) On the relationship between water vapour field evolution and the life cycle of precipitation systems. Q J R Meteorol Soc 137(S1):204–223

    Article  Google Scholar 

  • Xia P, Cai C, Liu Z (2013) GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles. Ann Geophys 31(10):1805–1815

    Article  Google Scholar 

  • Yao Y, Zhao Q (2016a) Maximally using GPS observation for water vapour tomography. IEEE Trans Geosci Remote Sens 54(12):7185–7196

    Article  Google Scholar 

  • Yao Y, Zhao Q (2016b) A novel, optimized approach of voxel division for water vapor tomography. Meteorol Atmos Phys 129(1):57–70

    Article  Google Scholar 

  • Yao Y, Zhao Q, Zhang B (2016) A method to improve the utilisation of GNSS observation for water vapour tomography. Ann Geophys 34(1):143–152

    Article  Google Scholar 

  • Ye S, Xia P, Cai C (2016) Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data. Ann Geophys 34(9):789–799

    Article  Google Scholar 

  • Zhao Q, Yao Y (2017) An improved troposphere tomographic approach considering the signals coming from the side face of the tomographic area. Ann Geophys 35(1):87–95

    Article  Google Scholar 

  • Zhao Q, Yao Y, Yao W, Xia P (2018) An optimal tropospheric tomography approach with the support of an auxiliary area. Ann Geophys 36(4):1037–1046

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank IGAR for providing access to the web-based IGAR data. The Zhejiang administration of surveying mapping and geoinformation is also acknowledged for providing the experimental data. This research was supported by the State Key Program of National Natural Science Foundation of China (41730109), Scientific Research Program of Shaanxi Provincial Education Department (18JK0508), the Excellent Youth Science and Technology Fund Project of Xi’an University of Science and Technology (2018YQ3-12) and the Startup Foundation for Doctor of Xi’an University of Science and Technology (2017QDJ041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhang, K., Yao, Y. et al. A new troposphere tomography algorithm with a truncation factor model (TFM) for GNSS networks. GPS Solut 23, 64 (2019). https://doi.org/10.1007/s10291-019-0855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0855-x

Keywords

Navigation