Skip to main content

Advertisement

Log in

Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

An Erratum to this article was published on 09 December 2011

Abstract

Pollution of the biosphere by the toxic metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The primary source of this pollution includes the industrial operations such as mining, smelting, metal forging, combustion of fossil fuels and sewage sludge application in agronomic practices. The metals released from these sources accumulate in soil and in turn, adversely affect the microbial population density and physico-chemical properties of soils, leading to the loss of soil fertility and yield of crops. The heavy metals in general cannot be biologically degraded to more or less toxic products and hence, persist in the environment. Conventional methods used for metal detoxification produce large quantities of toxic products and are cost-effective. The advent of bioremediation technology has provided an alternative to conventional methods for remediating the metal-poisoned soils. In metal-contaminated soils, the natural role of metal-tolerant plant growth promoting rhizobacteria in maintaining soil fertility is more important than in conventional agriculture, where greater use of agrochemicals minimize their significance. Besides their role in metal detoxification/removal, rhizobacteria also promote the growth of plants by other mechanisms such as production of growth promoting substances and siderophores. Phytoremediation is another emerging low-cost in situ technology employed to remove pollutants from the contaminated soils. The efficiency of phytoremediation can be enhanced by the judicious and careful application of appropriate heavy-metal tolerant, plant growth promoting rhizobacteria including symbiotic nitrogen-fixing organisms. This review presents the results of studies on the recent developments in the utilization of plant growth promoting rhizobacteria for direct application in soils contaminated with heavy metals under a wide range of agro-ecological conditions with a view to restore contaminated soils and consequently, promote crop productivity in metal-polluted soils across the globe and their significance in phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd-Alla MH (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. Springer-Verlag, New York, p 866

    Book  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free—living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Ana IGL, Sofia CC, Etelvina MAPF (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enz Microb Technol 39:763–769

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effects on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Llande R (2004) Potential of Rhizobium and Bradyrhizobioum species as plant growth promoting rhizobacteria on non-legumes: effect on radishes. Plant Soil 204:57–67

    Article  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Azevedo RA, Alas RM, Smith PJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild type and a catalase deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal accumulating plants. Resour Conserv Recycling 11:41–49

    Article  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Baelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–107

    Google Scholar 

  • Belimov AA, Safroonova VI, Mimura T (2002) Response of spring rape to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can J Microbiol 48:189–199

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510

    Article  CAS  Google Scholar 

  • Blake RC, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean-up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Breen AP, Murphy JA (1995) Reaction of oxyl radicals with DNA. Free Rad Biol Med 18:1033–1077

    Article  CAS  Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. C. R. Acad Sci III, Sciences de la 322:43–54

    Article  CAS  Google Scholar 

  • Braun V (1997) Avoidance of iron toxicity through regulation of bacterial iron transport. Biol Chem 378:779–786

    CAS  Google Scholar 

  • Brown GE Jr, Foster AL, Ostergren JD (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci USA 96:3388–3395

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimen of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Geobotany and hyperaccumulators. In: Brook RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 55–94

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydm A, Şahin F (2006) Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    Article  CAS  Google Scholar 

  • Cardoso PF, Priscila LG, Rui AG, Leonardo OM, Ricardo AA (2005) Response of Crotalaria junceae to nickel exposure. Braz J Plant Physiol 17:267–272

    Article  CAS  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation–focusing on hyperaccumulator plants that remediate metal-contaminated soils. Aust J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE, Rietz E, Sauerbeck DR (1993) Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biol Biochem 25:301–309

    Article  CAS  Google Scholar 

  • Chaudri AM, Allain CM, Barbosa-Jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment. Plant Soil 22:167–179

    Article  Google Scholar 

  • Chen W, Li GS, Qi YL, Wang ET, Yuan HL, Li L (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280

    Article  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and theirs roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Corticeiro CS, Lima AIG, Figueira EMAP (2006) The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under cadmium stress. Environ Microbiol Technol 40:132–137

    Article  CAS  Google Scholar 

  • Cunningham SD, Berri WR, Haung JW (1995) Phytoremediation of contaminated soil. Trends Biotech 134:393–397

    Article  Google Scholar 

  • Dalton DA (1995) Antioxidant defenses of plants and fungi. In: Ahmad S (ed) Oxidative stress and antioxidant defenses in biology. Chapman & Hall, New York, pp 298–355

    Chapter  Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Ind J Expt Biol 41:1160–1164

    CAS  Google Scholar 

  • Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in Pigeon Pea–Rhizobium symbiosis. Folia Microbiol 43:421–426

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2005) Bacterial Cr (VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27:943–947

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    Article  CAS  Google Scholar 

  • Figueira EMAP, Lima AIG, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 5:11–16

    Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    Article  CAS  Google Scholar 

  • Ghorbanli M, Kaveh SH, Sepehr MF (1999) Effect of cadmium and gibberellin on growth and photosynthesis of Glycine max. Photosynthetica 37:627–631

    Article  CAS  Google Scholar 

  • Giller KE, McGrath SP, Hirsch PR (1989) Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biol Biochem 21:841–848

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JA (2002) Model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-livingbacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2001) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech Adv 21:383–393

    Article  CAS  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth promoting rhizobacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EU, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  Google Scholar 

  • Gupta A, Meyer JM, Goel R (2002) Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. Curr Microbiol 45:323–332

    Article  CAS  Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73:424–431

    Article  CAS  Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    Article  CAS  Google Scholar 

  • Hayes WJ, Chaudhry RT, Buckney RT, Khan AG (2003) Phytoaccumulation of trace metals at the Sunny Corner mine, New South Wales, with suggestions for a possible remediation strategy. Aust J Ecotoxicol 9:69–82

    CAS  Google Scholar 

  • Hernandez A, Mellado RP, Martinez JL (1998) Metal accumulation and vanadium induced multidrug resistance by environmental isolates of Escherichia herdmanni and Enterobacter cloacae. Appl Env Microbiol 64:4317–4320

    CAS  Google Scholar 

  • Hong SH, Gohya M, Ono H, Murakami H, Yamashita M, Hirayama N, Murooka Y (2000) Molecular design of novel metalbinding oligomeric human metallothioneins. Appl Microbiol Biotechnol 54:84–89

    Article  CAS  Google Scholar 

  • Kamaludeen SP, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003) Chromium–microorganism interactions in soil remediation implications. Rev Environ Contam Toxicol 178:1076–1084

    Google Scholar 

  • Kamnev AA (1998) Reductive solubilization of Fe (III) by certain products of plant and microbial metabolism as a possible alternative to siderophore secretion. Doklady Biophys (Moscow) 358–360:48–51

    Google Scholar 

  • Kamnev AA, Kuzmann E, Perfiliev Yu D, Vanko GV, Ve’rtes A (1999b) Mossbauer and FTIR spectroscopic studies of iron anthranilates: coordination, structure and some ecological aspects of iron complexation. J Mol Struct 482/483:703–711

    Article  Google Scholar 

  • Kao PH, Huang CC, Hseu ZY (2006) Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere 64:63–70

    Article  CAS  Google Scholar 

  • Khan AG (2004) Mycotrophy and its significance in wetland ecology and wetland management. In: Wong MH (ed) Developments in ecosystems, vol 1. Elsevier, Northhampton, pp 97–114

    Google Scholar 

  • Khan AG (2005a) Mycorrhizas and phytoremediation. In: Willey N (ed) Method in biotechnology-phytoremediation: methods and reviews. Humana Press, Totowa

    Google Scholar 

  • Khan AG (2005b) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth promoting rhizobacteria and arbuscular mycorrhizal fungus on theperformance of wheat. Turk J Agric For 31:355–362

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Ind J Bot Soc 81:255–263

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture:a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes, fourth international conference on plant pathogen bacteria, vol 2. Angers, France, pp 879–882

  • Krishnamurti GSR (2000) Speciation of heavy metals: an approach for remediation of contaminated soils, in remediation engineering of contaminated soils. In: Wise DL, Trantalo DJ, Cichon EJ, Inyang HI, Stottmeister U (eds) Marcel Dekker Inc, New York, pp 693–714

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  CAS  Google Scholar 

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    Article  CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms-processes and importance for soil system. Earth Sci Rev 51:1–31

    Article  CAS  Google Scholar 

  • Leinhos V, Bergmann H (1995) Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. 2. Root-growth promotion and nutrient accumulation of maize (Zea-mays L.) by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas strains and by exogenously applied IAA under different water-supply conditions. Angew Bot 69:37–41

    CAS  Google Scholar 

  • Lena QM, Rao GN (1997) Heavy metals in the environment. J Environ Qual 26:264

    Google Scholar 

  • Lima AIG, Pereira SAI, Figueira EMAP, Caldeira GCN, Caldeira HDQM (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Env Exp Bot 55:149–162

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  • Lloyd JR, Macaskie LE (2000) Bioremediation of radioactive metals. In: Lovley DR (ed) Environmental microbe–metal interactions. ASM Press, Washington, pp 277–327

    Chapter  Google Scholar 

  • Lippmann B, Leinhos V, Bergmann H (1995) Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. 1. Changes in root morphology and nutrient accumulation in maize (Zea-mays L.) caused by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas and Acinetobacter strains or IAA applied exogenously. Angew Bot 69:31–36

    CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in rhizosphere. Appl Environ Microbiol 65:5357–5363

    CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu JH, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carbxylate deaminase containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  Google Scholar 

  • Mamaril JC, Paner ET, Alpante BM (1997) Biosorption and desorption studies of chromium (iii) by free and immobilized Rhizobium (BJVr 12) cell biomass. Biodegradation 8:275–285

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh S, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Physiol 166:525–530

    CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 137:135–142

    Article  Google Scholar 

  • Moftah AE (2000) Physiological response of lead polluted tomato and eggplant to the antioxidant ethylene diurea. Menufiya Agric Res 25:933–955

    Google Scholar 

  • Muller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Ronald LC, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

  • Murooka Y, Xu Y, Sanada H, Araki M, Morinaga T, Yokota A (1993) Formation of root nodules by Rhizobium huakuii biovar rengei bv. nov. on Astragalus sinicus cv. Japan J Ferment Bioeng 76:38–44

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  CAS  Google Scholar 

  • Noordman WH, Reissbrodt R, Bongers RS, Rademaker ILW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol 101:637–646

    Article  CAS  Google Scholar 

  • Nuswantara S, Fujie M, Yamada T, Malek W, Inaba M, Kaneko Y, Murooka Y (1999) Phylogenic position of Mesorhizobium huakuii subsp. rengei, a symbiont of Astragalus sinicus cv. Japan J Biosci Bioeng 87:49–55

    Article  CAS  Google Scholar 

  • Olson JW, Mehta NS, Maier RJ (2001) Requirement of nickel metabolism protein HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol 39:176–182

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Matin A (1999) Purification and characterization of chromate reductase in Pseudomonas putida. Gen Meet Am Soc Microbial 99:536–548

    Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting bacteria. Can J Microbiol 47:368–372

    Article  CAS  Google Scholar 

  • Pereira SIA, Lima AIG, Figueira EMAP (2006) Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy metal contamination: effect on protein expression. Appl Soil Ecol 33:286–293

    Article  Google Scholar 

  • Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32:415–425

    Article  CAS  Google Scholar 

  • Perveen S, Khan MS, Zaidi A (2002) Effect of rhizospheric microorganisms on growth and yield of greengram (Phaseolus radiatus). Ind J Agric Sci 72:421–423

    Google Scholar 

  • Ponmurugan PGC (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5:340–350

    Google Scholar 

  • Rahman M, Gul S, Haq MZ (2007) Reduction of chromium(vi) by locally isolated pseudomonassp. C-171. Turk J Biol 31:161–166

    CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Kui Jae L, Wang Hyu L, Sung Zoo K (2006) Influence of plant growth promoting bacteria and Cr (vi) on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (2000) Microorganisms and metal pollution, in environmental microbiology. In: Maier RM, Pepper IL, Gerba CB (eds) Academic Press, London, p 55

  • Robinson B, Russell C, Hedley, Clothier B (2001) Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agric Ecosyst Environ 87:315–321

    Article  CAS  Google Scholar 

  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I, zinc. Agronomie 23:3–11

    Article  Google Scholar 

  • Ruvkun GB, Sundaresan V, Ausubel FM (1982) Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 29:551–559

    Article  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root associated bacteria containing1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean. Lett Appl Microbiol 42:155–159

    Article  CAS  Google Scholar 

  • Shakolnik MY (1984) Trace elements in plants. Elsevier, New York, pp 140–171

    Google Scholar 

  • Shann JR, Boyle JJ (1994) Influence of plant species on in situ rhizosphere degradation. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington DC, pp 70–81

  • Sharma A, Talukdar G (1987) Effects of metals on chromosomes of higher organisms. Environ Mutagen 9:191–226

    Article  CAS  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyper accumulator Thlaspi caerulescens and the non-hyperacumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  Google Scholar 

  • Sriprang R, Hayashi M, yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  CAS  Google Scholar 

  • Sposito FG (2000) The chemistry of soils. In: Maier RM, Pepper IL, Gerba CB (eds) Environmental microbiology. Academic Press, London, pp 406

    Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by Mesorhizobium transformed with a gene for phytochelatin synthase from Arabidopsis. Appl Env Microbiol 69:1791–1796

    Article  Google Scholar 

  • Stresty EV, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13

    Article  Google Scholar 

  • Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides—1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Env Sci Biotech 4:115–156

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2003) Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella graecum. Ind J Microbiol 43:37–40

    Google Scholar 

  • Traina SJ, Laperche V (1999) Contaminant bioavailability in soils, sediments, and aquatic environments. Proc Natl Acad Sci USA 96:3365–3371

    Article  CAS  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore producing lead and cadmium resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Microbiology 74:46–53

    Article  CAS  Google Scholar 

  • Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  CAS  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Biores Technol 97:1237–1242

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Verma A, Kukreja K, Pathak DV, Suneja S, Narula N (2001) In vitro production of plant growth regulators (PGRs) by Azorobacter chroococcum. Ind J Microbiol 41:305–307

    Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 52:1523–1533

    Article  CAS  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Plant Biol 95:4766–4771

    CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  • Wang PC, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Env 16:579–585

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2006) An evaluation of the effects of heavy metals on the growth, seed yield and grain protein of lentil in pots. Ann Appl Biol (Suppl TAC) 27:23–24

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27:145–153

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Expt Agric 47:712–720

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Conatm Toxicol. doi:10.1007/00244-9097-y

  • Wani PA, Khan MS, Zaidi A (2007d) Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007e) Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007f) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007g) Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev. doi:10.1051/agro-2007048

  • Wani PA, Khan MS, Zaidi A (2007h) Chromium reduction, plant growth promoting potentials and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol. doi:10.1007/s00128-008-9383-z

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    Article  CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid (IAA) releasing potentials of rhizospheric microorganisms. Ann Plant Prote Sci 13:139–144

    Google Scholar 

  • Wenzel WW, Adriano DC, Salt D, Smith R (1999) Phytoremediation: a plant-microbe-based remediation system. In: Adriano DC, et al. (eds) Bioremediation of contaminated soils. Agronomy monographs 37. ASA, CSSA and SSSA, Madison, pp 457–508

    Google Scholar 

  • Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178:161–169

    Article  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006a) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1986) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    Article  Google Scholar 

  • Yasmin S, Rahman M, Hafeez FY (2004) Isolation, characterization and beneficial effects of rice associated plant growth promoting bacteria from Zanzibar soils. J Basic Microbiol 44:241–252

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on greengram-Bradyrhizobium symbiosis. Turk J Agric For 30:223–230

    CAS  Google Scholar 

  • Zaidi A, Khan MS (2007) Stimulatory effect of dual inoculation with phosphate solubilizing microorganisms and arbuscular mycorrhizal fungus on chickpea. Aust J Exp Agric 47:1014–1022

    Article  Google Scholar 

  • Zaidi A, Khan MS, Aamil M (2004) Bioassociative effect of rhizospheric microorganisms on growth, yield and nutrient uptake of greengram. J Plant Nutr 27:599–610

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioino Zaidi et al. 2004culant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

  • Zayad A, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    Article  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shin H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Intern 33:406–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10311-011-0338-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.S., Zaidi, A., Wani, P.A. et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7, 1–19 (2009). https://doi.org/10.1007/s10311-008-0155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-008-0155-0

Keywords

Navigation