Skip to main content
Log in

Reactivity of chlorine dioxide with amino acids, peptides, and proteins

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Amino acids, proteins, and peptides are found ubiquitously in waters. They can form harmful byproducts during water treatment by reaction with disinfectants. Chlorination and chloramination of water containing natural organic matter is known to result in the production of toxic substances, often referred to as disinfection byproducts. The main advantage of using chlorine dioxide (ClO2) over other known chlorine-containing disinfectants is the minimization of the formation of harmful trihalomethanes. Because ClO2 is a promising alternative to other chlorine-containing disinfectants, the chemistry of ClO2 interactions with amino acids, proteins, and peptides should be understood to ensure the safety of potable water supplies. Here, we present an overview of the aqueous chemistry of ClO2 and its reactivity with amino acids, peptides, and proteins. The kinetics and products of the reactions are reviewed. Only a few amino acids have been reported to be reactive with ClO2, and they have been found to follow second-order kinetics for the overall reaction. The rate constants vary from 10−2 to 10M−1 s−1 and follow an order of reactivity: cysteine > tyrosine > tryptophan > histidine > proline. For reactions of histidine, tryptophan, and tyrosine with ClO2, products vary depending largely on the molar ratios of ClO2 with the specific amino acid. Products of ClO2 oxidation differ with the presence or absence of oxygen in the reaction mixture. Excess molar amounts of ClO2 relative to amino acids are associated with the production of low molecular weight compounds. The oxidation of the biochemically important compounds bovine serum albumin and glucose-6-phosphate dehydrogenase by ClO2 suggests a denaturing of proteins by ClO2 by an attack on tryptophan and tyrosine residues and relates to the inactivation of microbes by ClO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NOM:

Natural organic matter

NDMA:

N-Nitrosodimethylamine

DOC:

Dissolved organic carbon

DBPs:

Disinfection byproducts

THMs:

Trihalomethanes

BSA:

Bovine serum albumin

G6PD:

Glucose-6-phosphate dehydrogenase

PBS:

Phosphate-buffered saline

References

  • Abdelmoez W, Nakahasi T, Yoshida H (2007) Amino acid transformation and decomposition in saturated subcritical water conditions. Ind Eng Chem Res 46:5286–5294

    Article  CAS  Google Scholar 

  • Bader H, Hoigne J (1982) Determination of ozone in water by the indigo method; a submitted standard method. Ozone Sci Eng 4:169–176

    Article  CAS  Google Scholar 

  • Bakhmutova-Albert EV, Margerum DW, Auer JG, Appelgate BM (2008) Chlorine dioxide oxidation of dihydronicotinamide adenine dinucleotide (NADH). Inorg Chem 47:2205–2211

    Article  CAS  Google Scholar 

  • Bieber TI, Trehy MJ (1983) Dihaloacetonitriles in chlorinated natural waters. Water Chlor Environ Impact Health Eff 4:85–96

    CAS  Google Scholar 

  • Boreen AL, Edhlund BL, Cotner JB, McNeill K (2008) Indirect photodegradation of dissolved free amino acids: the contribution of singlet oxygen and the differential reactivity of DOM from various sources. Environ Sci Technol 42:5492–5498

    Article  CAS  Google Scholar 

  • Burrows EP, Rosenblatt DH (1982) Conversion of acyclic amines to amides by chlorine dioxide. J Org Chem 47:892–893

    Article  CAS  Google Scholar 

  • Buttner MP, Cruz P, Stetzenback LD, Klima-Comba AK, Stevens VL, Cronin TD (2004) Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis. Appl Environ Microbiol 70:4740–4747

    Article  CAS  Google Scholar 

  • Chinn R, Barrett S (1999) Occurrence of amino acids in drinking water sources. Book of Abstracts, ACS Nat Meeting, p 217

  • Darkwa J, Olojo R, Chikwana E, Simoyi RH (2004) Antioxidant chemistry: oxidation of l-cysteine and its metabolites by chlorite and chlorine dioxide. J Phys Chem A 108:5576–5587

    Article  CAS  Google Scholar 

  • Duguet JP, Anselme C, Mallevialle J (1988) Identification of organonitrogen compounds in waters and their changes in systems for potable water treatment. Water Supply 6:253–263

    CAS  Google Scholar 

  • Fimmen RL, Trouts TD, Richter DD Jr, Vasudevan D (2008) Improved speciation of dissolved organic nitrogen in natural waters: amide hydrolysis with fluorescence derivatization. J Environ Sci 20:1273–1280

    Article  CAS  Google Scholar 

  • Gates D (1998) The chlorine dioxide handbook. American Water Works Association, Denver

  • Gordon G, Bubnis B (1995) Chlorine dioxide chemistry issues. Proceeding of the third international symposium on chlorine dioxide: drinking water, process water and wastewater issues, vol 3. pp 1–15

  • Gordon G, Rosenblatt A (2005) Chlorine dioxide: the current state of the art. Ozone Sci Eng 27:203–207

    Article  CAS  Google Scholar 

  • Higgins MJ, Adams G, Chen YC, Erdal Z, Forbes JRH, Glindermann D, Hargreaves JR, McEwen D, Murthy SN, Novak JT, Witherspoon J (2008) Role of protein, amino acids, enzyme activity on odor production from anerobically digested dewatered biosolids. Water Environ Res 80:127–135

    Article  CAS  Google Scholar 

  • Hoigne J, Bader H (1994) Kinetics of reactions of chlorine dioxide (OClO) in water—I. Rate constants for inorganic and organic compounds. Water Res 28:45–55

    Article  CAS  Google Scholar 

  • Huang J, Graham N, Templeton MR, Zhang Y, Collins C, Nieuwenhuijsen M (2009) A comparison of the role of two blue-green algae in THM and HAA formation. Water Res 43:3009–3018

    Article  CAS  Google Scholar 

  • Ison A, Odeh IN, Margerum DW (2006) Kinetics and mechanisms of chlorine dioxide and chlorite oxidations of cysteine and glutathione. Inorg Chem 45:8768–8775

    Article  CAS  Google Scholar 

  • Karpel Vel Leitner N, Berger P, Legube B (2002) Oxidation of amino groups by hydroxyl radicals in relation to the oxidation degree of the α-carbon. Environ Sci Technol 36:3083–3089

    Article  CAS  Google Scholar 

  • Katritzky AR (2002) Advances in heterocyclic chemistry. Elsevier, San Diego 257

    Google Scholar 

  • Kennaugh J (1957) Action of diaphanol on athropod cuticles. Nature 180:238

    Article  CAS  Google Scholar 

  • Kim JM, Huang TS, Marshall MR, Wei CI (1999) Chlorine dioxide treatment of seafoods to reduce bacterial loads. Food Sci 64:1089–1093

    Article  CAS  Google Scholar 

  • Knocke WR, Van Benschoten JE, Kearney MJ, Soborski AW, Reckhow DA (1991) Kinetics of manganese and iron oxidation by potassium permanganate and chlorine dioxide. J Am Water Works Assoc 83:80–87

    CAS  Google Scholar 

  • Kull TPJ, Sjovall OT, Tammenkoski MK, Backlund PH, Meriluoto JAO (2006) Oxidation of the cyanobacterial hepatoxin microcystin-LR by chlorine dioxide: influence of natural organic matter. Environ Sci Technol 40:1504–1510

    Article  CAS  Google Scholar 

  • Lee W, Westerhoff P (2009) Formation of organic chloramines during water disinfection—chlorination versus chloramination. Water Res 43:2223–2239

    Google Scholar 

  • Lee C, Schmidt C, von Yoon J, Gunten U (2007) Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential. Environ Sci Technol 41:2056–2063

    Article  CAS  Google Scholar 

  • Li JW, Yu Z, Cai X, Goa M, Chao F (1996) Trihalomethanes formation in water treated with chlorine dioxide. Water Res 30:2371–2376

    Google Scholar 

  • Loginova IV, Rodygin KS, Rubtsova SA, Slepukhin PA, Kuchin AV, Polukeev VA (2011) Oxidation of polyfunctional sulfides with chlorine dioxide. Russ J Org Chem 47:124–130

    Article  CAS  Google Scholar 

  • Long BW, Miller RF, Rosenblatt AA (1997) Pilot study: the use of high-purity, chlorine-free chlorine dioxide to minimize trihalomethane formation. Chem Oxid 6:126–133

    CAS  Google Scholar 

  • Lykins BW, Griese MH (1986) Using chlorine dioxide for trihalomethane control. J Am Water Works Assoc 78:88–93

    CAS  Google Scholar 

  • Lytle CR, Perdue EM (1981) Free, proteinaceous, and humic-bound amino acids in river water containing high concentrations of aquatic humus. Environ Sci Technol 15:224–228

    Article  CAS  Google Scholar 

  • Margerum DW, Schurter LM, Hobson J, Moore EE (1994) Water chlorination chemistry: nonmetal redox kinetics of chloramine and nitrite ion. Environ Sci Technol 28:331–337

    Article  CAS  Google Scholar 

  • Masschelein WJ, Rice RG (1979) Chlorine dioxide: chemistry and environmental impact of oxychlorine compounds. Ann Harbor Science Publishers, Ann Harbor 190

    Google Scholar 

  • McVeigh JR, Lee RG, Kelleher DL (1985) Chlorine dioxide use in pretreatment for control of triohalomethane generation. Proceedings of the AWWA annual conference. pp 825–839

  • Moore ER, Bourne AE, Hoppe TJ, Abode PJ, Boone SR, Purser GH (2004) Kinetics and mechanism of the oxidation of iron(II) ion by chlorine dioxide in aqueous solution. Int J Chem Kinet 36:554–565

    Article  CAS  Google Scholar 

  • Na C, Olson TM (2006) Mechanism and kinetics of cyanogen chloride formation from the chlorination of glycine. Environ Sci Technol 40:1469–1477

    Article  CAS  Google Scholar 

  • Nadupalli S, Koorbanally N, Jonnalagadda SB (2011) Chlorine dioxide-facilitated oxidation of the azo dye amaranth. J Phys Chem A 115:11682–11688

    Article  CAS  Google Scholar 

  • Napolitano MJ, Green BJ, Nicoson JS, Margerum DW (2005) Chlorine dioxide oxidations of tyrosine, N-acetyltyrosine, and dopa. Chem Res Toxicol 18:501–508

    Article  CAS  Google Scholar 

  • Navalon S, Alvaro M, Garcia H (2009) Chlorine dioxide reaction with selected amino acids in water. J Hazard Mater 164:1089–1097

    Article  CAS  Google Scholar 

  • Noss CI, Dennis WH, Olivieri VP (1983) Reactivity of chlorine dioxide with nucleic acids and proteins. Water Chlor Environ Impact Health Eff 4:1077–1086

    CAS  Google Scholar 

  • Noss CI, Hauchman FS, Olivieri VP (1986) Chlorine dioxide reactivity with proteins. Water Res 20:351–356

    Article  CAS  Google Scholar 

  • Odeh IN, Francisco JS, Margerum DW (2002) New pathways for chlorine dioxide decomposition in basic solution. Inorg Chem 41:6500–6506

    Article  CAS  Google Scholar 

  • Ogata N (2007) Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 46:4898–4911

    Article  CAS  Google Scholar 

  • Pattison DI, Davies MJ (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14:1453–1464

    Article  CAS  Google Scholar 

  • Pereira RO, Postigo C, de Alda ML, Daniel LA, Barceló D (2011) Removal of estrogens through water disinfection processes and formation of by-products. Chemosphere 82:789–799

    Article  CAS  Google Scholar 

  • Ramos DR, Garcia MV, Canle LM, Santaballa JA, Furtmuller PG, Obinger C (2008) Myeloperoxidase-catalyzed chlorination: the quest for the active species. J Inorg Biochem 102:1300–1311

    Article  CAS  Google Scholar 

  • Richardson SD, Thruston AD, Collette TW, Schenck PK, Lykins BW, Majetich G, Zhang Y (1994) Multispectral identification of chlorine dioxide disinfection byproducts in drinking water. Environ Sci Technol 28:592–599

    Google Scholar 

  • Richardson SD, Thruston AD, Rav-Acha C, Groisman L, Popilevsky I, Juraev O, Glezer V, McKague AB, Plewa MJ, Wagner ED (2003) Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environ Sci Technol 37:3782–3793

    Google Scholar 

  • Rosenblatt DH (1982) Oxidation of phenol and hydroquinone by chlorine dioxide. Environ Sci Technol 16:396–402

    Article  Google Scholar 

  • Shang C, Qi Y, Xie L, Liu W, Yang X (2005) Kinetics of cyanogen chloride destruction by chemical reduction methods. Water Res 39:2114–2124

    Article  CAS  Google Scholar 

  • Sharma VK (2008) Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): kinetics assessment. Chemosphere 73:1379–1386

    Google Scholar 

  • Sharma VK, Sohn M (2012) Oxidation of amino acids, peptides, and proteins by chlorine dioxide. Implications for water treatment. In: Environmental chemistry for a sustainable world. Volume 2: remediation of air and water pollution, pp 237–234. doi: 10.1007/978-94-007-2439-6_5

  • Simat TJ, Steinhart H (1998) Oxidation of free tryptophan and tryptophan residues in peptides and proteins. J Agric Food Chem 46:490–498

    Article  CAS  Google Scholar 

  • Smith MB, March J (2007) Reactions, mechanisms, and structure. Wiley, NJ, p 2357

    Google Scholar 

  • Southwell KL (2003) Chlorine dioxide dry fumigation in special collection libraries—a case study. Lib Arch Secur 18:39–49

    Article  Google Scholar 

  • Spitzy A (1982) Amino acids and sugars in deep and shallow groundwater from the hamburg region, vol 52. Mitteilungen aus dem Geologisch-Palaeontologischen Institut der Universitaet, Hamburg, pp 743–748

  • Stelmaszynska T, Zgliczynski JM (1978) N-(2-oxoacyl)amino acids and nitriles of dipeptide chlorination mediated by myeloperoxidase/HzOz/Cl system. Eur J Biochem 92:301–308

    Article  CAS  Google Scholar 

  • Stewart DJ, Napolitano MJ, Bakhmutova-Albert EV, Margerum DW (2008) Kinetics and mechanisms of chlorine dioxide oxidation of tryptophan. Inorg Chem 47:1639–1647

    Article  CAS  Google Scholar 

  • Symons JM, Love OT Jr., Carswell JK (1981) Treatment techniques for controlling trihalomethanes in drinking water. EPA 600/2-81

    Google Scholar 

  • Tan HK, Wheeler WB, Wei CI (1987) Reaction of chlorine dioxide with amino acids and peptides: kinetics and mutagenicity studies. Mutation Res 188:259–266

    Article  CAS  Google Scholar 

  • Taymaz K, Williams DT, Benoit FF (1979) Reactions of aqueous chlorine dioxide with amino acids found in water. Bull Environ Contam Toxicol 23:456–463

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Martinus Nijhoff Publishers, The Hague, pp 512

  • Tratnyek PG, Hoigne J (1994) Kinetics of reactions of chlorine dioxide (OClO) in water—II. Quantitative structure-activity relationships for phenolic compounds. Water Res 28:57–66

    Article  CAS  Google Scholar 

  • Trehy ML, Bieber TI (1981) Detection, identification, and quantitative analysis of dihaloacetonitriles in chlorinated natural waters. Proceeding of the advances in the identification and analysis of organic pollutants in water, vol 2. pp 941–975

  • Trehy ML, Yost RA, Miles CJ (1986) Chlorination byproducts of amino acids in natural waters. Environ Sci Technol 20:1117–1122

    Article  CAS  Google Scholar 

  • Troitskaya NV, Mishchenko KP, Flis IE (1958) The ClO2 + e = ClO2 equilibrium in aqueous solutions at various temperatures. Russ J Phys Chem 33:1614–1617

    Google Scholar 

  • Tsai L, Higby R, Schade J (1995) Disinfection of poultry chiller water with chlorine dioxide: consumption and byproduct formation. J Agric Food Chem 43:2768–2773

    Article  CAS  Google Scholar 

  • Umile TP, Groves JT (2011) Catalytic generation of chlorine dioxide from chlorite using a water-soluble manganese porphyrin. Angew Chem Int Ed 50:695–698

    Article  CAS  Google Scholar 

  • Wang L, Odeh IN, Margerum DW (2004) Chlorine dioxide reduction by aqueous iron(II) through outer-sphere and inner-sphere electron-transfer pathways. Inorg Chem 43:7545–7551

    Article  CAS  Google Scholar 

  • Wang P, He Y, Huang C (2010) Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: reaction kinetics, product and pathway evaluation. Water Res 44:5989–5998

    Article  CAS  Google Scholar 

  • Wang P, He Y, Huang C (2011) Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine. Water Res 45:1838–1846

    Article  CAS  Google Scholar 

  • Werdehoff KS, Singer PC (1987) Chlorine dioxide effects on THMFP, TOXFP and the formation of inorganic by-products. J Am Water Works Assoc 79:107–113

    CAS  Google Scholar 

  • Wilson SC, Wu C, Andriychuck LA, Martin JM, Brasel TL, Jumper CA, Straus DC (2005) Effect of chlorine dioxide gas on fungi and mycotoxins associated with sick building syndrome. Appl Environ Microbiol 71:5399–5402

    Article  CAS  Google Scholar 

  • Yakupov MZ, Shereshovets VV, Imashev UB, Ismagilov FR (2001) Liquid-phase oxidation of thiols with chlorine dioxide. Russ Chem Rev 50:2352–2355

    CAS  Google Scholar 

  • Yang X, Shang C (2004) Chlorination byproducts formation in the presence of humic acid, model nitrogeneous organic compounds, ammonia, and bromide. Environ Sci Technol 38:4995–5001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virender K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Sohn, M. Reactivity of chlorine dioxide with amino acids, peptides, and proteins. Environ Chem Lett 10, 255–264 (2012). https://doi.org/10.1007/s10311-012-0355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-012-0355-5

Keywords

Navigation