Skip to main content

Advertisement

Log in

Review of fly ash inertisation treatments and recycling

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Fly ash (FA) is a by-product of power, and incineration plants operated either on coal and biomass, or on municipal solid waste. FA can be divided into coal fly ash, obtained from power plant burning coal, flue gas desulphurisation FA, that is, the by-product generated by the air pollution control equipment in coal-fired power plants to reduce the release of SO2, biomass FA produced in the plants for thermal conversion of biomass and municipal solid waste incineration (MSWI) FA, that is, the finest residue obtained from the scrubber system in a MSWI plant. Because of the large amount produced in the world, fly ash is now considered the world’s fifth largest material resource. The composition of FA is very variable, depending on its origins; then, also pollutants can be very different. In this frame, it is fundamental to exploit the chemical or physical potentials of FA constituents, thus rendering them second-life functionality. This review paper is addressed to FA typology, composition, treatment, recycling, functional reuse and metal and organic pollutants abatement. Because of the general growing of environmental awareness and increasing energy and material demand, it is expected that increasing recycling rates will reduce the pressure on demand for primary raw materials, help to reuse valuable materials which would otherwise be wasted and reduce energy consumption and greenhouse gas emissions from extraction and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AES:

Acid extraction sulphide stabilisation process

APC:

Air pollution control

COSMOS:

Colloidal silica medium to obtain safe inert

DC:

Direct current

EDTA:

Ethylenediaminetetraacetate

FA:

Fly ash

FGD:

Flue gas desulphurisation

LCA:

Life cycle assessments

LOI:

Loss of ignition

MSWI:

Municipal solid waste incineration

PAH:

Polycyclic aromatic hydrocarbon

PCB:

Polychlorinated bifenyl

PCDD:

Polychlorodibenzo-p-dioxin

PCDF:

Polychlorodibenzo-p-furan

POP:

Persistent hazardous organic pollutants

RHA:

Rice husk ash

S/S:

Solidification/stabilisation

TEQ:

Toxic equivalent

References

  • Adriano DC, Page AL, Elseewi AA, Chang AC, Straugham I (1980) Utilization and disposal of fly-ash and coal residues in terrestrial ecosystem: a review. J Environ Qual 9:333–344

    CAS  Google Scholar 

  • Adriano DC, Weber J, Bolan NS, Paramasivan S, Bon-Jun Koo, Sajwan KS (2002) Effects of high rates of coal fly ash on soil, turfgrass, and groundwater quality. Water Air Soil Pollut 139:365–385

    CAS  Google Scholar 

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363

    CAS  Google Scholar 

  • Alba N, Gasso S, Lacorte T, Baldasano JM (1997) Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems. J Air Waste Manag Assoc 47:1170–1179

    CAS  Google Scholar 

  • American Coal Ash Association (ACAA) (2010) Coal combustion product (CCP) production and use survey report. American Coal Ash Association, Aurora

    Google Scholar 

  • An DM, Guo YP, Zou B, Zhu YC, Wang ZC (2011) A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35:1227–1234

    CAS  Google Scholar 

  • Andreola F, Barbieri L, Hreglich S, Lancellotti I, Morselli L, Passarini F, Vassura I (2008) Reuse of incinerator bottom and fly ashes to obtain glassy materials. J Hazard Mater 153:1270–1274

    CAS  Google Scholar 

  • Apak G, Atun G, Guclu K, Tutem E (1996) Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. II. Usage of coal fly ash. J Nucl Sci Technol 33:396–402

    CAS  Google Scholar 

  • Arayapranee W, Naranong N, Rempel GL (2005) Application of rice husk ash as fillers in the natural rubber industry. J Appl Polym Sci 98:34–41

    CAS  Google Scholar 

  • ASTM (2005) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (C618-05). In: Annual book of ASTM standards, concrete and aggregates, vol. 04.02. American Society for Testing Materials

  • Auer PO, Eichler B, Ludwig C, Stucki S, Wochele J (1999) Recycling heavy metals by the method of fractionated condensation. In: 4th World congress: recovery, recycling, re-integration. Geneve, vol. 4, pp. 328–333

  • Barbieri L, Lancellotti I (2004) Incinerator waste as secondary raw material: examples of applications in glasses, glass-ceramics and ceramics. Geol Soc Spec Pub 236:423–433

    CAS  Google Scholar 

  • Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci 19:1173–1186

    CAS  Google Scholar 

  • Bayat B (2002) Combined removal of zinc (II) and cadmium (II) from aqueous solutions by adsorption onto high-calcium Turkish fly ash. Water Air Soil Pollut 136:69–92

    CAS  Google Scholar 

  • Benezet JC, Adamiec P, Benhassaine A (2008) Relation between silico-aluminous fly ash and its coal of origin. Particuology 6:85–92

    CAS  Google Scholar 

  • Bernardo E, Bonomo E, Dattoli A (2010) Optimisation of sintered glass–ceramics from an industrial waste glass. Ceram Int 36:1675–1680

    CAS  Google Scholar 

  • Besco S, Brisotto M, Gianoncelli A, Depero LE, Bontempi E, Lorenzetti A, Modesti M (2013) Processing and properties of polypropylene-based composites containing inertized fly ash from municipal solid waste incineration. J Appl Polym Sci 130:4157–4164

    CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Biotechnol 141:876–887

    CAS  Google Scholar 

  • Blissett RS, Rowson NA (2012) A review of the multi-component utilisation of coal fly ash. Fuel 97:1–23

    CAS  Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE (2010a) A new powder filler, obtained by applying a new technology for fly ash inertisation procedure. Adv Sci Technol 62:27–33

    CAS  Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE (2010b) A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J Environ Monit 12:2093–2099

    CAS  Google Scholar 

  • Bosio A, Ardesi R, Zacco A, Brisotto M, Gianoncelli A, Gelfi M, Depero LE, Bontempi E (2012) Reuse of COSMOS filler, obtained by municipal solid waste incineration fly ash inertization, in plastic materials. In: Proceedings of 3rd international conference on “industrial and hazardous waste management” 12–14 September 2012, Chania, Crete, Greece

  • Bosio A, Rodella N, Gianoncelli A, Zacco A, Borgese L, Depero LE, Bingham PA, Bontempi E (2013) A new method to inertize incinerator toxic fly ash with silica from rice husk ash. Environ Chem Lett 11:329–333

    CAS  Google Scholar 

  • Bosshard PP, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus. Niger Environ Sci Technol 30:3066–3070

    CAS  Google Scholar 

  • Breck DW (1984) Ion exchange reactions in zeolites. In: Robert E (ed) Zeolite molecular sieves, structure, chemistry, and use. Malabar FL TIC. Krieger Publishing 7: 245213

  • Burke M (2007) CCP experts gather in India. In: Ash at work, vol. 2. CO 80014. American Coal Ash Association, USA, pp 17–19

  • Cerevelli S, Petruzzelli G, Perna A, Menicagli R (1986) Soil nitrogen and fly ash utilization: a laboratory investigation. Agrochemica 30:27–33

    Google Scholar 

  • Chandrasekhar S, Pramada PN (2006) Rice husk ash as an adsorbent for methylene blue-effect of ashing temperature. Adsorption 12:27–43

    CAS  Google Scholar 

  • Chandrasekhar S, Pramada PN, Praveen L (2005) Effect of organic acid treatment on the properties of rice husk silica. J Mater Sci 40:6535–6544

    CAS  Google Scholar 

  • Chaowasakoo T, Sombatsompop N (2007) Mechanical and morphological properties of fly ash/epoxy composites using conventional thermal and microwave curing methods. Compos Sci Technol 67:2282–2291

    Google Scholar 

  • Chaturvedi AK, Yadava KP, Pathak KICK, Singh VN (1990) Defluoridation of water by adsorption of fly ash. Water Air Soil Pollut 49:51–61

    CAS  Google Scholar 

  • Chaudhary DS, Jollands MS (2004) Characterization of rice hull ash. J Appl Polym Sci 93:1–8

    CAS  Google Scholar 

  • Chen J, Li Y (2006) Coal fly ash as an amendment to container substrate for Spathiphyllum production. Bioresour Technol 97:1920–1926

    CAS  Google Scholar 

  • Cheung KICK, Venkitachalam TH (2000) Improving phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere 41:243–249

    CAS  Google Scholar 

  • Chimenos J, Fernández A, Cervantes A, Miralles L, Fernández M, Espiell F (2005) Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Manag 25:686–693

    CAS  Google Scholar 

  • Choi W, Hong SJ, Chang YS, Cho Y (2000) Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation. Environ Sci Technol 34:4810–4815

    CAS  Google Scholar 

  • Chou SY, Lo SL, Hsieh CH, Chen CL (2009) Sintering of MSWI fly ash by microwave energy. J Hazard Mater 163:357–362

    CAS  Google Scholar 

  • Chu TC, Wang KS, Lin KL, Chien CC, Chen JH (2013) Synthesis of waste-derived glass-ceramics from MSWI fly ash and EAF dust: kinetics of nucleation and crystallization. Environ Progr Sustain Energ. doi:10.1002/ep.11647

    Google Scholar 

  • Ciccu R, Ghiani M, Serci A, Fadda S, Peretti R, Zucca A (2003) Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner Eng 16:187–192

    CAS  Google Scholar 

  • Cicek T, Tanriverdi M (2007) Lime based steam autoclaved fly ash bricks. Constr Build Mater 21:1295–1300

    Google Scholar 

  • Davidovits J (1994) Geopolymers: inorganic polymeric new materials. J Mater Educ 16:91–139

    CAS  Google Scholar 

  • Davini P (2002) Flue gas treatment by activated carbon obtained from oil-fired fly ash. Carbon 40:1973–1979

    CAS  Google Scholar 

  • De Boom A, Degrez M (2012) Belgian MSWI fly ashes and APC residues: a characterisation study. Waste Manag 32:1163–1170

    Google Scholar 

  • Denuex-mustin S, Roussel-Debet S, Mustin C, Henner P, Munier-Lamy C, Colle C, Berthein J, Garnier-Laplace J, Leyval C, Mobilite et al. (2003) Transfer des elements en traces: influence des microorganisms du so. Tec et Doc, Paris, p 282

  • Department of Scientific and Industrial Research India (DSIRI) (1992) Technology evaluation in rice milling industry, New Delhi

  • Derie R (1996) A new way to stabilise fly ash from municipal incinerators. Waste Manag 16:711–716

    CAS  Google Scholar 

  • Diamadopoulos E, Loannidis S, Sakellaropoulos GP (1993) As(V) removal from aqueous solutions by fly ash. Water Res 27:1773–1777

    CAS  Google Scholar 

  • Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A 269:47–58

    CAS  Google Scholar 

  • Ecke H (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manag 23:631–640

    CAS  Google Scholar 

  • Eichmy TT, Crannell BS, Butler LC, Cartledge FK, Emery EF, Oblas D, Krzanowski JE, Eusden JD, Shaw EL, Francis CA (1997) Heavy metal stabilisation in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol 37:3330–3338

    Google Scholar 

  • Enighmy TT, Eusden JD, Krzanowski JE, Dominggo DS, Stampfli D, Martin JR, Erickson PM (1995) Comprehensive approach toward understanding element speciation and leaching behaviour in municipal solid waste incineration electrostatic precipitator ash. Environ Sci Technol 29:629–646

    Google Scholar 

  • European Coal Combustion Products Association (ECOBA) (2008) Production and utilisation of CCPs in 2008 in Europe (EU 15)

  • Fedje KK, Ekberg C, Skarnemark G, Steenari BM (2010) Removal of hazardous metals from MSW fly ash: an evaluation of ash leaching methods. J Hazard Mater 173:310–317

    Google Scholar 

  • Fermo P, Cariati F, Pozzi A, Demartin F, Tettamanti M, Collina E, Lasagni M, Pieta D, Puglisi O, Russo U (1999) The analytical characterization of municipal solid waste incinerator fly ash: methods and preliminary results. Fresenius J Anal Chem 365:666–673

    CAS  Google Scholar 

  • Fermo P, Cariati F, Pozzi A, Tettamanti M, Collina E, Pieta D (2000) Analytical characterization of municipal solid waste incinerator fly ash: Part II. Fresenius J Anal Chem 366:267–272

    Google Scholar 

  • Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 96:201–216

    CAS  Google Scholar 

  • Foletto EL, Gratieri E, de Hadlich OL, Jahn SL (2006) Conversion of rice hull ash into soluble sodium silicate. Mater Res 9:335–338

    CAS  Google Scholar 

  • Forestier LL, Libourel G (1998) Characterization of flue gas residues from municipal solid waste combustors. Environ Sci Technol 32:2250–2256

    Google Scholar 

  • Francois D, Criado C (2007) Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator. J Hazard Mater B139:543–549

    Google Scholar 

  • Fukui K, Arai K, Fukui K, Yoshida H (2006) Phillipsite synthesis from fly ash prepared by hydrothermal treatment with microwave heating. Adv Powder Technol 17:369–382

    CAS  Google Scholar 

  • Fukui K, Fukui K, Yamamoto T, Yoshida H (2007) Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment. Adv Powder Technol 18:381–393

    CAS  Google Scholar 

  • Gaikwad RW (2004) Removal of Cd (II) from acqueous solution by activated charcoal derived from coconut shell. Electron J Environ Agric Food Chem 3:702–709

    Google Scholar 

  • Galiano LY, Fernández Pereira C, Vale J (2011) Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J Hazard Mater 185:373–381

    Google Scholar 

  • Garau MA, Dalmau JL, Felipo MT (1991) Nitrogen mineralization in soil amended with sewage sludge and fly ash. Biol Fertil Soils 12:199–201

    CAS  Google Scholar 

  • Gashi ST, Daci NM, Ahmeti XM, Selimi TJ, Hoxha EM (1988) Removal of heavy metals from industrial wastewaters, chemistry for protection of the environment. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Gianoncelli A, Zacco A, Struis RPWJ, Borgese L, Depero LE, Bontempi E (2013) Fly ash pollutants, treatment and recycling. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Pollutant diseases, remediation and recycling. Springer. ISBN 978-3-319-02386-1

  • Girón RP, Ruiz B, Fuente E, Gil RR, Suárez-Ruiz I (2013) Properties of fly ash from forest biomass combustion. Fuel 144:71–77

    Google Scholar 

  • Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10

    Google Scholar 

  • Gupta VK, Ali I (2000) Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep Purif Technol 18:131–140

    CAS  Google Scholar 

  • Hagenmaier H, Horch K, Fahlenkamp H, Schetter G (1991) Destruction of PCDD and PCDF in refuse incineration plants by primary and secondary measures. Chemosphere 23:1429–1437

    CAS  Google Scholar 

  • Haiying Z, Youcai Z, Jingyu Q (2007) Study on use of MSWI fly ash in ceramic tile. J Hazard Mater 141:106–114

    Google Scholar 

  • Helmuth R (1987) Fly ash in cement and concrete. Portland Cement Association, Skokie, pp 36–61

    Google Scholar 

  • Hinton WS, Lane AM (1991) Characteristics of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere 22:473–483

    CAS  Google Scholar 

  • Hjelmar O (1996) Disposal strategies for municipal solid waste incineration residues. J Hazard Mater 47:345–368

    CAS  Google Scholar 

  • Hjelmar O, Birch H (1997) Treatment of air pollution control residues from MSW incinerators prior to landfill-ing. In: Proceedings Sardinia 97, 6th international landfill symposium, S. Margharita di Pula, Cagliari, Italy, pp 535–544

  • Hjelmar O, Hansen JB (2006) A one-stage treatement process for improv-ing the leaching characteristics of APC residues from MSW incinerators. In: Proceedings of WASCON 2006, 6th international conference on the environmental and technical implications of construction with alternative materials: science and engineering of recycling for environmental protection, Belgrade, Serbia, May 30–June 2, 2006, ISCOWA, ISBN 86–9088 15–0–6, pp 97–105

  • Hjelmar O, Birch H, Hansen JB (1999) Development of a process for treatment of APCresidues from MSW incinerators prior to landfilling. In: Proceedings Sardinia 99, 7th international landfill symposium, vol. 1, pp. 543–548

  • Hollis JF, Keren R, Gal M (1988) Boron release and sorption by fly ash as affected by pH and particle size. J Environ Qual 17:181–184

    CAS  Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater 75:57–73

    CAS  Google Scholar 

  • Hosseini MM, Shao Y, Whalen JK (2011) Biocement production from silicon-rich plant residues: perspectives and future potential in Canada. Biosyst Eng 110:351–362

    Google Scholar 

  • International Ash Working Group (IAWG), Chandler AJ, Eighmy TT, Hartlén O, Kosson D, Sawell SE, van der Sloot H, Vehlow J (1997) Municipal solid waste incinerator residues. Studies in environmental science. Elsevier Science, Amsterdam, p 67

  • Ismail MS, Waliuddin AM (1996) Effect of rice husk ash on high strength. Concr Const Build Mat 10:521–526

    Google Scholar 

  • Iyer RS, Scott JA (2001) Power station fly ash e a review of value-added utilization outside of the construction industry. Resour Conserv Recycl 31:217–228

    Google Scholar 

  • Izquierdo M, Querol X (2012) Leaching behaviour of elements from coal combustion fly ash: an overview. Int J Coal Geol 94:54–66

    CAS  Google Scholar 

  • Izumikawa C (1996) Metal recovery from fly ash generated from vitrification process for MSW ash. Waste Manag 16:501–507

    CAS  Google Scholar 

  • Jakob A, Stucki S, Kuhn P (1995) Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ Sci Technol 29:2429–2436

    CAS  Google Scholar 

  • Jakob A, Stucki S, Struis RW (1996) Complete heavy metal removal from fly ash by heat treatment: influence of chlorides an evaporation rates. Environ Sci Technol 30:3275–3283

    CAS  Google Scholar 

  • Jala S, Goyal D (2006) Fly ash as a soil ameliorant for improving crop production: a review. Bioresour Technol 97:1136–1147

    CAS  Google Scholar 

  • Jankowski J, Ward CR, French D, Groves S (2006) Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 85:243–256. Special Issue: The 21st Annual International Pittsburgh Coal Conference

    Google Scholar 

  • Janos P, Buchtova H, Ryznarova M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37:4938–4944

    CAS  Google Scholar 

  • Jayasinghe GY, Tokashiki Y, Kitou M, Kinjo K (2009) Coal fly ash based synthetic aggregates as potential alternative container substrates for ornamentals. J Plant Nutr Soil Sci 172:720–728

    CAS  Google Scholar 

  • Jayasinghe GY, Tokashiki Y, Kitou M (2010) Use of synthetic soil aggregates as a containerized growth medium component to substitute peat in the ornamental plant production. Arch Agron Soil Sci 56:183–199

    Google Scholar 

  • Jensen DL, Lundtrop K, Christensen TH (2002) Treatment of waste incineration air-pollution control residues with FeSO4: laboratory investigation of design parameters. Waste Manag Res 20:80–89

    CAS  Google Scholar 

  • Jin M, Huang C, Chen L, Sun X, Wang L (2011) Immobilization of MSWI fly ash with geopolymers. Adv Mater Res 150–151:1564–1569

    Google Scholar 

  • Jung CH, Matsuto T, Tanaka N (2005) Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW). Waste Manag 25:301–310

    CAS  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Restoration of fly ash dumps through biological interventions. Environ Monit Assess 139:355–365

    CAS  Google Scholar 

  • Kalapathy U, Proctor A, Shultz J (2000) Simple method for production of pure silica from rice hull ash. Bioresour Technol 73:257–262

    CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1992) Adsorption of mercury from wastewater by fly ash. Adsorpt Sci Technol 9:130–147

    CAS  Google Scholar 

  • Katsuura H, Inoue T, Hiraoka M, Sakai S (1996) Full-scale plant study on fly ash treatment by the acid extraction process. Waste Manag 16:491–499

    CAS  Google Scholar 

  • Kersch C, Ortiz SP, Woerlee GF, Witkamp GJ (2004) Leachability of metals from fly ash: leaching tests before and after extraction with supercritical CO2 and extractants. Hydrometallurgy 72:119–127

    CAS  Google Scholar 

  • Khatri C, Rani A (2008) Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance. Fuel 87:2886–2892

    CAS  Google Scholar 

  • Khatri C, Mishra MK, Rani A (2010) Synthesis and characterization of fly ash supported sulfated zirconia catalyst for benzylation reactions. Fuel Process Technol 91:1288–1295

    CAS  Google Scholar 

  • Kim SH, Kwak SY, Suzuki T (2006) Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC. Polymer 47:3005–3016

    CAS  Google Scholar 

  • Kim Y-R, Pinto I, Park S-W (2012) Experimental evaluation of anti-stripping additives in bituminous mixtures through multiple scale laboratory test results. Constr Build Mater 29:386–393

    Google Scholar 

  • Kost DA, Bigham JM, Stehouwer RC, Beeghly JH, Fowler R, Traina SJ, Wolfe WE, Dick WA (2005) Chemical and physical properties of dry flue gas desulfurization products. J Environ Qual 34:676–686

    CAS  Google Scholar 

  • Krebs W, Bachofen R, Brandl H (2001) Growth stimulation of sulfur oxidizing bacteria for optimization of metal leaching efficiency of fly ash from municipal solid waste incineration. Hydrometallurgy 59:283–290

    CAS  Google Scholar 

  • Kulkarni PS, Crespo JC, Afonso CAM (2008) Dioxins sources and current remediation technologies: a review. Environ Int 34:139–153

    CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2007) Stabilization of Pb and Cu contaminated soil using coal fly ash and peat. Environ Pollut 145:365–373

    CAS  Google Scholar 

  • Kuo Y, Lin T, Tsai P, Lee W, Lin H (2003) Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace. Chemosphere 51:313–319

    CAS  Google Scholar 

  • Kutchko BG, Kim AG (2006) Fly ash characterization by SEM–EDS. Fuel 85:2537–2544

    CAS  Google Scholar 

  • Lancellotti I, Kamseu E, Michelazzi M, Barbieri L, Corradi A, Leonelli C (2010) Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag 30:673–679

    CAS  Google Scholar 

  • Landreth RE (1986) Guide to the disposal of chemically stabilized and solidified waste. EPA SW-72, US Environmental Protection Agency. Cincinnati, OH

  • Lee H, Ha HS, Lee CS, Lee YB, Kim PJ (2006) Fly ash effect on improving soil properties and rice productivity in Korean paddy soil. Bioresour Technol 97:1490–1497

    CAS  Google Scholar 

  • Lee VKC, Cheung WH, McKay G (2008) PCDD/PCDF reduction by the co-combustion process. Chemosphere 70:682–688

    CAS  Google Scholar 

  • Leiva C, Arenas CG, Vilches LF, Vale J, Gimenez A, Ballesteros JC, Fernández-Pereira C (2010) Use of FGD gypsum in fire resistant panels. Waste Manag 30:1123–1129

    CAS  Google Scholar 

  • Li X, Fernández Bertos M, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manag 27:1200–1206

    CAS  Google Scholar 

  • Lima AT, Ottosen LM, Ribeiro AB (2012) Assessing fly ash treatment: remediation and stabilization of heavy metals. J Environ Manag 95:110–115

    Google Scholar 

  • López-Antón MA, Díaz-Somoano M, Martínez-Tarazona MR (2007) Mercury retention by fly ashes from coal combustion: influence of the unburned coal content. Ind Eng Chem Res 46:927–931

    Google Scholar 

  • Ludwig C, Hellweg S, Stucki S (2003) Municipal solid waste management. Springer, Berlin. ISBN 3-540-44100-X

    Google Scholar 

  • Ludwig C, Wochele J, Jorimann U (2007) Measuring evaporation rates of metal compounds from solid samples. Anal Chem 79:2992–2996

    CAS  Google Scholar 

  • Lundtorp K, Jensen DL, Sørensen MA, Mogensen EPB, Christensen TH (1999) Stabilization of APC-residues with FeSO4. In: Proceedings Sardinia 99, 7th international landfill symposium, vol. 1, pp 549–556

  • Lundtorp K, Jensen DL, Sorensen MA, Christensen TH, Mogensen EPB (2002) Treatment of waste incinerator air-pollution-control residues with FeSO4: concept and product characterisation. Waste Manag Res 20:69–79

    CAS  Google Scholar 

  • Lutz H (2002) Detoxification of filter ashes from municipal solid waste incinerators, ETH Zürich, PhD thesis No. 14653, Switzerland

  • Ma WP, Brown PW (1997) Hydrothermal reactions of fly ash with Ca(OH)2 and CaSO4·2H2O. Cem Concr Res 27:1237–1248

    CAS  Google Scholar 

  • Mahin DB (1990) Energy from rice residue, biomass energy and technology report. Winrock International Institute for Agricultural Development, Arlington

    Google Scholar 

  • Mahvi AH, Maleki A, Eslami A (2004) Potential of rice husk and rice husk ash for phenol removal in aqueous systems. Am J Appl Sci 1:321–326

    CAS  Google Scholar 

  • Malviya R, Chaudhary R (2006) Factors affecting hazardous waste solidification/stabilization: a review. J Hazard Mater B 137:267–276

    CAS  Google Scholar 

  • Mandal A, Sengupta D (2003) Radioelemental study of Kolaghat, thermal power plant, West Bengal, India: possible environmental hazards. Environ Geol 44:180–186

    Google Scholar 

  • Mangialardi T (2001) Sintering of MSW fly ash for reuse as a concrete aggregate. J Hazard Mater 87:225–239

    CAS  Google Scholar 

  • Manz OE (1999) Coal fly ash: a retrospective and future look. Fuel 78:133–136

    CAS  Google Scholar 

  • Maroto-Valer MM, Taulbee DN, Schobert HH, Hower JC, Andersen JM (1999) Use of unburned carbon in fly ash as precursor for the development of activated carbons. International ash utilization symposium, paper #19

  • Masia AAT, Buhre BJP, Gupta RP, Wall TF (2007) Use of TMA to predict deposition behaviour of biomass fuels. Fuel 86:2446–2456

    Google Scholar 

  • Mathur AK (2000) Ash utilisation in NTPC. In: Proceedings of the workshop on fly ash utilisation: issues and strategies, pp 41–45

  • Matti SS, Mukhopadhyay TM, Gupta SK, Banerjee SK (1990) Evaluation of fly ash as a useful material in agriculture. J Ind Soc Soil Sci 38:342–344

    Google Scholar 

  • McKay G (2002) Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chem Eng J 86:343–368

    CAS  Google Scholar 

  • Mehdinia SM, Latif PA, Abdullah AM, Taghipour H (2011) Synthesize and characterization of rice husk silica to remove the hydrogen sulfide through the physical filtration system. Asian J Sci Res 4:246–254

    CAS  Google Scholar 

  • Meima JA, Comans RNJ (1999) The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering. Appl Geochem 14:159–171

    CAS  Google Scholar 

  • Miyake M, Tamura C, Matsuda M (2002) Resource recovery of waste incineration fly ash: synthesis of zeolites A and P. J Am Ceram Soc 85:1873–1875

    CAS  Google Scholar 

  • Mohan D, Singh KP, Singh G, Kumar K (2002) Removal of dyes from wastewater using fly ash, a low-cost adsorbent. Ind Eng Chem Res 41:3688–3695

    CAS  Google Scholar 

  • Moreno N, Querol X, Andrés JM, Stanton K, Towler M, Nugteren H, Janssen-Jurkovicová M, Jones R (2005) Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 84:1351–1363

    Google Scholar 

  • Mugica J, Aguirre P, Fresnillo P (1995) Vitrification de cenizas volantes con plasma. Ing Quim April:137–142

  • Mukherjee AB, Zevenhoven R, Bhattacharya P, Sajwan KS, Kikuchi R (2008) Mercury flow via coal and coal utilization by-products: a global perspective. Resour Conserv Recycl 52:571–591

    Google Scholar 

  • Mulder E (1996) Pre-treatment of MSWI fly ash for useful application. Waste Manag 16:181–184

    CAS  Google Scholar 

  • Mustafa Al Bakri AM, Kamarudin H, Bnhussain M, Khairul Nizar I, Rafiza AR, Izzat AM (2011) Chemical reactions in the geopolymerisation process using fly ash-based geopolymer: a review. Aust J Basic App Sci 5:1199–1203

    Google Scholar 

  • Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead (II) ions on rice husk ash. J Hazard Mater 163:1254–1264

    CAS  Google Scholar 

  • Nam IH, Hong HB, Kim YM, Kim BH, Murugesan K, Chang YS (2005) Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1. Water Res 39:4651–4660

    CAS  Google Scholar 

  • Narayanasamy P, Gnanakumar D (1989) A. Lignite fly-ash: a nonpolluting substance for tackling pest problems. In: Devaraj KV (ed) Progress in pollution research. University of Agricultural Sciences, Bangalore, pp 201–206

    Google Scholar 

  • Nishida K, Nagayoshi Y, Ota H, Nagasawa H (2001) Melting and stone production using MSW incinerated ash. Waste Manag 21:443–449

    CAS  Google Scholar 

  • Nomura Y, Fujiwara K, Takada M, Nakai S, Hosomi M (2006) Detoxification of fly ash by mechanochemical treatment with blast furnace slag and the usability of the residues as cement materials. J Jpn Soc Waste Manag Experts 17:355–360

    CAS  Google Scholar 

  • Nomura Y, Fujiwara K, Takada M (2008) Lead immobilization in mechanochemical fly ash recycling. J Mater Cycles Waste Manag 10:14–18

    CAS  Google Scholar 

  • Nowak B, Frías Rocha S, Aschenbrenner P, Rechberger H, Winter F (2012) Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: influence of the chloride type. Chem Eng J 179:178–185

    CAS  Google Scholar 

  • Nzihou A, Sharrock P (2002) Calcium phosphate stabilization of fly ash with chloride extraction. Waste Manag 22:235–239

    CAS  Google Scholar 

  • Obernberger I, Biedermann F, Widmann W, Riedl R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12:211–224

    CAS  Google Scholar 

  • Panday KK, Prasad G, Singh VN (1985) Copper (II) removal from aqueous solutions by fly ash. Water Res 19:869–873

    CAS  Google Scholar 

  • Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16–27

    Google Scholar 

  • Papastefanou C (2008) Radioactivity of coals and fly ashes. Radioactivity of coals and fly ashes. J Radioanal Nucl Chem 275:29–35

    CAS  Google Scholar 

  • Park YJ, Heo J (2002) Vitrification of fly ash from municipal solid waste incinerator. J Hazard Mater 91:83

    CAS  Google Scholar 

  • Park JS, Taniguchi S, Park YJ (2009) Alkali borosilicate glass by fly ash from a coal-fired power plant. Chemosphere 74:320–324

    Google Scholar 

  • Patel M, Karera A, Prasanna P (1987) Effect of thermal and chemical treatments on carbon and silica contents in rice husk. J Mater Sci 22:2457–2464

    CAS  Google Scholar 

  • Pedersen AJ (2002) Evaluation of assisting agents for electrodialytic removal of Cd, Pb, Zn, Cu and Cr from MSWI fly ash. J Hazard Mater B 95:185–198

    CAS  Google Scholar 

  • Pedersen AJ, Ottosen LM, Villumsen A (2005) Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. J Hazard Mater 122:103–109

    CAS  Google Scholar 

  • Peloso A, Rovatti M, Ferraiolo G (1983) Fly ash as adsorbent material for toluene vapours. Resour Conserv Recycl 10:211–220

    CAS  Google Scholar 

  • Piantone P, Bodenan F, Derie R, de Pelsenaire G (2003) Monitoring the stabilisation of municipal solid waste incineration fly ash by phosphation. Waste Manag 23:225–243

    CAS  Google Scholar 

  • Pichtel JR, Hayes JM (1990) Influence of fly ash on soil microbial activity and populations. J Environ Qual 19:593–597

    CAS  Google Scholar 

  • Prabhu PVSS, Narayanaswamy MS, Narasa Raju TSS (1981) Adsorption of zinc from aqueous solutions by fly ash. IAWPC Tech Annu 8:46–52

    CAS  Google Scholar 

  • Querol X, Alastuey A, Jose LFT, Angel LS (1995) Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel 74:1226–1231

    CAS  Google Scholar 

  • Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 28:2097–2121

    CAS  Google Scholar 

  • Rajamma R, Ball RJ, Tarelho LAC, Allen GC, Labrincha JA, Ferreira VM (2009) Characterisation and use of biomass fly ash in cement-based materials. J Hazard Mater 172:1049–1060

    CAS  Google Scholar 

  • Rani DA, Boccaccini AR, Deegan D, Cheeseman CR (2008) Air pollution control residues from waste incineration: current UK situation and assessment of alternative technologies. Waste Manag 28:2279–2292

    Google Scholar 

  • Rao VMHG (1980) Utilization of rice husk: a preliminary analysis. J Sci Ind Res 39:495–515

    Google Scholar 

  • Rautaray SK, Ghosh BC, Mittra BN (2003) Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice–mustard cropping sequence under acid lateritic soils. Bioresour Technol 90:275–283

    CAS  Google Scholar 

  • Rawlings RD, Wu JP, Boccaccini AR (2006) Glass-ceramics: their production from wastes—a review. J Mater Sci 41:733–761

    CAS  Google Scholar 

  • Reiner M, Rens K (2006) High-volume fly ash concrete: analysis and application. Pract Period Struct Des Constr 11:58–64

    Google Scholar 

  • Rotenberg SJ, Mettzler G, Poliner J, Bechtold WE, Eidson AF, Newton GJ (1991) Adsorption kinetics of vapor-phase m-xylene on coal fly ash. Environ Sci Technol 25:930–935

    Google Scholar 

  • Roy A, Eaton HC, Cartledge FK, Tittlebaum ME (1991) Solidification/stabilization of heavy metal sludge by a Portland cement/fly ash binding mixture hazard. Waste Hazard Mater 8:33–41

    Google Scholar 

  • Ruangtaweep Y, Kaewkhao J, Kedkaew C, Limsuwan P (2011) Investigation of biomass fly ash in Thailand for recycle to glass production. Procedia Eng 8:58–61

    Google Scholar 

  • Rubel A, Andrews R, Gonzalez R, Groppo J, Robl T (2005) Adsorption of Hg and NOx on coal by-products. Fuel 84:911–916

    CAS  Google Scholar 

  • Rubio B, Izquierdo MT, Mayoral MC, Bona MT, Andres JM (2007) Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal. J Hazard Mater 143:561–566

    CAS  Google Scholar 

  • Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Assbicher S, Klein R, Lehner P (2003) Management of municipal solid waste incinerator residues. Waste Manag 23:61–88

    CAS  Google Scholar 

  • Sajwan KS, Paramasivam S, Alva AK, Adriano DC, Hooda PS (2003) Assessing the feasibility of land application of fly ash, sewage sludge and their mixtures. Adv Environ Res 8:77–91

    CAS  Google Scholar 

  • Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258

    CAS  Google Scholar 

  • Sako T, Sugeta T, Otake K, Sato M, Tsugumi M, Hiaki T, Hongo M (1997) Decomposition of dioxins in fly ash with supercritical water oxidation. J Chem Eng Jpn 30:744–747

    CAS  Google Scholar 

  • Sankari SA, Narayanasamy P (2007) Bio-efficacy of fly-ash based herbal pesticides against pests of rice and vegetables. Curr Sci 92:811–816

    CAS  Google Scholar 

  • Scheetz BE, Earle R (1998) Utilization of fly ash. Curr Opin Solid State Mater Sci 3:510–520

    CAS  Google Scholar 

  • Shao L, Xu ZX, Jin W, Yin HL (2009) Rice husk as carbon source and biofilm carrier for water denitrification. Pol J Environ Stud 18:693–699

    CAS  Google Scholar 

  • Shen JF, Zhou XW, Sun DS, Fang JG, Liu ZJ, Li Z (2008) Soil improvement with coal ash and sewage sludge: a field experiment. Environ Geol 53:1777–1785

    CAS  Google Scholar 

  • Shen DK, Gu S, Luo KH, Bridgewater AV, Fang MX (2009) Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88:1024–1030

    CAS  Google Scholar 

  • Shi HS, Kan LL (2009) Characteristics of municipal solid wastes incineration (MSWI) fly ash–cement matrices and effect of mineral admixtures on composite system. Constr Build Mater 23:2160–2166

    Google Scholar 

  • Shulman DM (2007) An aggregate replacement. A power plant byproduct may be ideal for concrete production. Concr Prod 25:41–42

    Google Scholar 

  • Singh BK, Nayak PS (2004) Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash. Adsorpt Sci Technol 22:295–309

    CAS  Google Scholar 

  • Spesier C, Baumann T, Niessner R (2000) Morphological and chemical characterisation of calcium-hydrate phases formed in alteration processes of deposited municipal solid waste incinerator bottom ash. Environ Sci Technol 34:5030–5037

    Google Scholar 

  • Sreekanth MS, Joseph S, Mhaske ST, Mahanwar PA, Bambole VA (2011) Effects of mica and fly ash concentration on the properties of polyester thermoplastic elastomer composites. J Thermoplast Compos 24:317–331

    CAS  Google Scholar 

  • Struis RPWJ, Ludwig C, Lutz H (2004) Speciation of zinc in municipal solid waste incineration fly ash after heat treatment: an X-ray absorption spectroscopy study. Environ Sci Technol 38:3760–3767

    CAS  Google Scholar 

  • Struis RPWJ, Nachtegaal M, Mattenberger H, Ludwig C (2009) The fate of lead in MSWI-fly ash during heat treatment: An X-Ray absorption spectroscopy study. Adv Eng Mater 11:507–512

    Google Scholar 

  • Stucki S, Jakob A (1997) Thermal treatment of incinerator fly ash: factors influencing the evaporation of ZnCl2. Waste Manag 17:231–236

    CAS  Google Scholar 

  • Suárez-Ruiz I, Parra JB (2007) Relationship between the textural properties, fly ash carbons and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends. Energy Fuel 21:1915–1923

    Google Scholar 

  • Suárez-Ruiz I, Hower JC, Thomas GA (2007) Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants. Energy Fuel 21:59–70

    Google Scholar 

  • Sun RC (2010) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier. ISBN: 978-0-444-53234-3

  • Tejasvi A, Kumar S (2012) Impact of fly ash on soil properties. Natl Acad Sci Lett 35:13–16

    CAS  Google Scholar 

  • Tho-in T, Sata V, Chindaprasirt P, Jaturapitakkul C (2012) Pervious high-calcium fly ash geopolymer concrete. Constr Build Mater 30:366–371

    Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310

    CAS  Google Scholar 

  • van der Bruggen B, Vogels G, Van Herck P, Vandecasteele C (1998) Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals. J Hazard Mater 57:127–144

    Google Scholar 

  • van Deventer JS, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104

    Google Scholar 

  • Vassilev SV, Vassileva CG (2005) Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview. Energy Fuels 19:1084–1098

    CAS  Google Scholar 

  • Volz JS (2012) High-volume fly ash concrete for sustainable construction. Adv Mater Res 512–515:2976–2981

    Google Scholar 

  • Wang S (2008) Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42:7055–7063

    CAS  Google Scholar 

  • Wang S, Lu GQ (2007) Effect of chemical treatment on Ni/fly-ash catalysts in methane reforming with carbon dioxide. In: Fbio Bellot Noronha MS, Eduardo Falabella SA (eds) Studies in surface science and catalysis. Elsevier, vol. 167, pp 275–80

  • Wang S, Wu H (2006) Environmental-benign utilisation of fly ash as low-cost adsorbents. J Hazard Mater 136:482–501

    CAS  Google Scholar 

  • Wang XK, Sun CQ, Cai HW (1999) Origin of the Chinese cultivated rice (Oryza sativa L.). Chin Sci Bull 44:295–304

    Google Scholar 

  • Wang Q, Yan J, Tu X, Chi Y, Li X, Lu S, Cen K (2009) Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel 88:955–958

    CAS  Google Scholar 

  • Wey MY, Liu KY, Tsai TH, Chou JT (2006) Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln. J Hazard Mater B137:981–989

    Google Scholar 

  • Wu C, Tang Y, Tang L (2012) Removal of heavy metal from wastewater using zeolite from fly ash. Adv Mater Res 518–523:2736–2739

    Google Scholar 

  • Xenidis A, Mylona E, Paspaliaris I (2002) Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manag 22:631–641

    CAS  Google Scholar 

  • Xue J, Wang W, Wang Q, Liu S, Yang J, Wui T (2010) Removal of heavy metals from municipal solid waste incineration (MSWI) fly ash by traditional and microwave acid extraction. J Chem Technol Biotechnol 85:1268–1277

    CAS  Google Scholar 

  • Yamaguchi H, Shibuya E, Kanamaru Y, Uyama K, Nishioka M, Yamasaki M (1996) Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash. Chemosphere 32:203–208

    CAS  Google Scholar 

  • Yan JH, Peng Z, Lu SY, Li XD, Ni MJ (2007) Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. J Hazard Mater 147:652–657

    CAS  Google Scholar 

  • Yang G, Tsai C (1998) A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash. J Hazard Mater 58:103–120

    CAS  Google Scholar 

  • Yang GCC, Yang TY (1998) Synthesis of zeolites from municipal incinerator fly ash. J Hazard Mater 62:75–89

    CAS  Google Scholar 

  • Yilmaz G (2012) Structural characterization of glass-ceramics made from fly ash containing SiO2–Al2O3–Fe2O3–CaO and analysis by FT-IR-XRD-SEM methods. J Mol Struct 1019:37–42

    CAS  Google Scholar 

  • Yin C, Rosendahl LA, Kaer SK (2008) Grate-firing of biomass fort heat and power production. Progr Energ Combust 34:725–754

    Google Scholar 

  • Zacco A, Gianoncelli A, Ardesi R, Sacrato S, Guerini L, Bontempi E, Tomasoni G, Alberti M, Depero LE (2012) Use of colloidal silica to obtain a new inert from municipal solid waste incinerator (MSWI) fly ash: first results about reuse. Clean Technol Environ 14:291–297

    CAS  Google Scholar 

  • Zeng Z, Liu H, Yu H, Peng Z (2012) Structure and thermal properties of RHA/NR composite. Adv Mater Res 482–484:1275–1280

    Google Scholar 

  • Zevenbergen C, Comans RNJ (1994) Geochemical factors controlling the mobilization of major elements during weathering of MSWI ash. In: Goumans JJM, van der Sloot HA, Aalbers ThG (eds) Environmental aspects of construction with waste materials, Stud Environ Sci, vol. 60. Elsevier Science Publisher, Amsterdam, pp 179–194

  • Zhao YC, Stucki S, Ludwig C, Wochele J (2004) Impact of moisture on volatility of heavy metals in municipal solid waste incinerated in a laboratory scale simulated incinerator. Waste Manag 24:581–587

    CAS  Google Scholar 

  • Zhijun Y, Chuanhai X, Qing Z, Jiping C, Xinmiao L (2007) Catalytic detoxification of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash. Waste Manag 27:588–592

    Google Scholar 

  • Zhou YX, Yan P, Cheng ZX, Nifuku M, Liang XD, Guan ZC (2003) Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash. Powder Technol 135–136:345–353

    Google Scholar 

  • Zhu T, Kuang J, Xu W, Ye M, Guo Y, Liu W (2012) Study on mercury adsorption performance of modified fly ash. Adv Mater Res 343–344:246–249

    Google Scholar 

Download references

Acknowledgments

The authors from the Brescia University (Italy) acknowledge LIFE+ financial instrument of the European Community (LIFE+ 2011 project ENV/IT/ 256) and RPWJ Struis thanks Prof. Chr. Ludwig (EPFL, Switzerland) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza Bontempi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacco, A., Borgese, L., Gianoncelli, A. et al. Review of fly ash inertisation treatments and recycling. Environ Chem Lett 12, 153–175 (2014). https://doi.org/10.1007/s10311-014-0454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0454-6

Keywords

Navigation