Skip to main content

Advertisement

Log in

Chromite mining pollution, environmental impact, toxicity and phytoremediation: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Chromite mining activities are indispensable for production of goods and services. Sukinda is a major mining site of Odisha, India, polluted by chromium, which is highly toxic in its hexavalent form. The Sukinda valley is a rich source of chromites, amounting to almost 95% of Cr available in India, and is the fourth most polluted site worldwide. Immediate solutions are needed to protect the health of biotic species of this region and their surroundings. Here we review chromite mining in India, impact of chromite pollution on plants and the environment, and phytoremediation of Cr-polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdu N, Abdullahi AA, Abdulkadir A (2017) Heavy metals and soil microbes. Environ Chem Lett 15:65–84. https://doi.org/10.1007/s10311-016-0587-x

    Article  CAS  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. Genet Eng Biotechnol N13(1):51–58. https://doi.org/10.1016/j.jgeb.2015.02.001

    Article  Google Scholar 

  • Arakawa H, Weng M, Chen W, Tang M (2012) Chromium(VI) induces both bulky DNA adducts and oxidative DNA damage at adenines and guanines in the p53 gene of human lung cells. Carcinogenesis 33(10):1993–2000

    CAS  Google Scholar 

  • Bahadur A, Ahmad R, Afzal A, Feng H, Suthar V, Batool A, Khan A, Mahmood-ul-Hassan M (2017) The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr(VI) stress in agronomic sunflower (Helianthus annuus L.). Chemosphere 179:112–119. https://doi.org/10.1016/j.chemosphere.2017.03.102

    Article  CAS  Google Scholar 

  • Bali AS, Sidhu GPS, Kumar V (2020) Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett 18:1243–1275. https://doi.org/10.1007/s10311-020-01012-x

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Gunse J (1985) Effect of chromium(VI) on mineral element composition of bush beans. J Plant Nutr 8:211–217

    CAS  Google Scholar 

  • Bassi M, Donini A (1984) Phallotoxin visualization of F-actin in normal and chromium poisoned Euglena cells. Cell Biol Int Rep 8:867–871

    CAS  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82(8):493

    CAS  Google Scholar 

  • Bianchi V, Celotti L, Lanfreanchi G, Majone F, Marin G, Di Montal A, Sponza G, Tamino G, Venier P, Zantideschi A, Levis AG (1983) Genetic effects of chromium compounds. Mutat Res 117:279–300

    CAS  Google Scholar 

  • Black Smith Institute Report (2007) The world’s worst polluted places. A project of Blacksmith Institute, pp 16–17

  • Bondarenko BM, Ctarodoobova AT (1981) Morphological and cultural changes in bacteria under the effect of chromium salts. J Microbiol Epidemiol Immunobiol 4:99–100

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    CAS  Google Scholar 

  • Chandra R, Kumar V, Singh K (2018) Hyperaccumulator versus nonhyperaccumulator plants environment waste management. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, pp 14–35

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobiumcellulans KUCr3. World J MicrobBiot 25:1829–1836. https://doi.org/10.1007/s11274-009-0084-5

    Article  CAS  Google Scholar 

  • Chaudhary K, Agarwal S, Khan S (2018) Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance. In: Prasad R (ed) Mycoremediation and environmental sustainability. Springer, Cham, pp 39–60. https://doi.org/10.1007/978-3-319-77386-5

    Chapter  Google Scholar 

  • Chitraprabha K, Sathyavathi S (2018) Phytoextraction of chromium from electroplating effluent by Tageteserecta (L.). Sustain Environ Res 28:128–134. https://doi.org/10.1016/j.serj.2018.01.002

    Article  CAS  Google Scholar 

  • Coleman RN (1988) Chromium toxicity: effects on microorganisms with special reference to the soil matrix. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 335–368

    Google Scholar 

  • Corradi MG, Gorbi G, Ricci A, Torelli A, Bassi AM (1995) Chromium-induced sexual reproduction gives rise to a Cr-tolerant progeny in Scenedesmusacutus. Ecotoxicol Environ Saf 32:12–18

    CAS  Google Scholar 

  • Das PK (2018) Phytoremediation and nanoremediation: emerging techniques for treatment of acid mine drainage water. Def Life Sci J 3(2):190–196. https://doi.org/10.14429/dlsj.3.11346

    Article  Google Scholar 

  • Das AP, Mishra S (2010) Biodegradation of the metallic carcinogen Hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain. J Carcinog 9:6

    Google Scholar 

  • Das AP, Singh S (2011) Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med 15:6–13. https://doi.org/10.4103/0019-5278.82998

    Article  Google Scholar 

  • Das PK, Das BP, Dash P (2017) Hexavalent chromium induced toxicity and its remediation using macrophytes. Pollut Res 36(1):92–98

    CAS  Google Scholar 

  • Das PK, Das BP, Dash P (2018) Role of plant species as hyper-accumulators in the decontamination of hexavalent chromium contaminated soil. Indian J Environ Health 38(12):1016–1024

    Google Scholar 

  • Dey SK, Jena PP, Kundu S (2009) Antioxidative efficiency of Triticum aestivum L. exposed to chromium stress. J Environ Biol 30(4):539–544

    CAS  Google Scholar 

  • Dhakate R, Singh VS (2008) Heavy metal contamination in groundwater due to mining activities in Sukinda valley, Orissa—a case study. J Geogr Reg Plan 1(4):058–067

    Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2011) Environmental quality of the Boula-Nuasahi chromite mine area in India. Mine Water Environ 30:191–196

    CAS  Google Scholar 

  • Din BU, Amna, Rafique M, Javed MT, Kamran MA, Mehmood S, Khan M, Sultan T, Hussain Munis MF, Chaudhary HJ (2020) Assisted phytoremediation of chromium spiked soils by Sesbania Sesban in association with Bacillus xiamenensis PM14: a biochemical analysis. Plant Physiol Biochem 146:249–258

    CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisumsativum L. cv: Azad) root mitochondria. Plant Cell Environ 25:687–693

    CAS  Google Scholar 

  • Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53(9):1147–1153

    CAS  Google Scholar 

  • Dubey CS, Sahoo BK, Nayak NR (2001) Chromium(VI) in waters in parts of Sukinda chromite valley and health hazards, Orissa, India. Bull Environ Contam Toxicol 67:541–548. https://doi.org/10.1007/s00128-001-0157-0

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. https://doi.org/10.1016/j.biortech.2013.12.102

    Article  CAS  Google Scholar 

  • Gómez-Garrido M, Mora Navarro J, Murcia Navarro FJ, Faz Cano Á (2018) The chelating effect of citric acid, oxalic acid, amino acids and Pseudomonas fluorescens bacteria on phytoremediation of Cu, Zn, and Cr from soil using Suaedavera. Int J Phytoremediat 20(10):1033–1042

    Google Scholar 

  • Gopal R, Rizvi AH, Nautiyal N (2009) Chromium alters iron nutrition and water relations of spinach. J Plant Nutr 32(9):1551–1559

    CAS  Google Scholar 

  • Groves WA, Kecojevic VJ, Komljenovic D (2007) Analysis of fatalities and injuries involving mining equipment. J Saf Res 38:461–470

    CAS  Google Scholar 

  • Gunkel-Grillon P, Laporte-Magoni C, Lemestre M et al (2014) Toxic chromium release from nickel mining sediments in surface waters, New Caledonia. Environ Chem Lett 12:511–516. https://doi.org/10.1007/s10311-014-0475-1

    Article  CAS  Google Scholar 

  • Gupta R, Mehta R, Kumar N, Dahiya DS (2000) Effect of chromium(VI) on phosphorus fractions in developing sunflower seeds. Crop Res 20:46–51

    Google Scholar 

  • Hartford W (1983) Chromium chemicals. In: Grayson M (ed) Kirk-Othmer encyclopedia of chemical technology, vol 6, 3rd edn. Wiley-Interscience, New York, pp 83–120

    Google Scholar 

  • Holland SL, Avery SV (2009) Actin-mediated endocytosis limits intracellular Cr accumulation and Cr toxicity during chromate stress. Toxicol Sci 111(2):437–446

    CAS  Google Scholar 

  • IARC (1990) Chromium, nickel, and welding, Monogr on the evaluation of carcinogenic risks to humans, vol 49. International Agency for Research on Cancer, Lyons

    Google Scholar 

  • Indian bureau of mines (2000) National Mineral Inventory—an overview. Nagpur, pp 1–48

  • Indian bureau of mines (2004) Indian mineral year book. Nagpur, pp 276–476

  • Indian bureau of mines (2010) Indian minerals yearbook. pp 18–51

  • Indian bureau of mines (2013) Monograph on chromite. pp 1–153

  • Jensen CD, Gujarathi NP (2016) Methyl jasmonate improves radical generation in macrophyte phytoremediation. Environ Chem Lett 14:549–558. https://doi.org/10.1007/s10311-016-0591-1

    Article  CAS  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    CAS  Google Scholar 

  • Juarez AB, Barsanti L, Passarelli V et al (2008) In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorinaunicocca and Chlorella Kessleri. J Environ Monit 10(11):1313–1318

    CAS  Google Scholar 

  • Kahlon SK, Sharma G, Julka JM et al (2018) Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 16:919–946. https://doi.org/10.1007/s10311-018-0737-4

    Article  CAS  Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268. https://doi.org/10.1016/j.gexplo.2016.11.021

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19. https://doi.org/10.1007/s10311-008-0155-0

    Article  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46. https://doi.org/10.1080/10643389991259164

    Article  CAS  Google Scholar 

  • Kleiner AM, Stolbun BM, Likhacheva YI (1970) Indices of the functional status of the myocardium and hemodynamics in chromium occupational poisoning with chromium compounds. Gig Tr Prof Zabol (Russian) 14:7–10

    CAS  Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462. https://doi.org/10.1016/j.chemosphere.2018.10.066

    Article  CAS  Google Scholar 

  • Lal S, Ratna S, Said OB, Kumar R (2018) Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov 10:243–263. https://doi.org/10.1016/j.eti.2018.02.011

    Article  Google Scholar 

  • Lindberg E, Hestidania G (1983) Chrome plating symptoms findings in the upper airways and effects on lung function. Arch Environ Health 38(6):367–374

    CAS  Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99(7):2628–2636

    CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161

    Article  CAS  Google Scholar 

  • Lopez-Luna J, Gonzalez-Chavez MC, Esparza-Garcıa FJ, Rodrıguez-Vazquez R (2009) Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater 163(2–3):829–834

    CAS  Google Scholar 

  • Lotfy SM, Mostafa AZ (2014) Phytoremediation of contaminated soil with cobalt and chromium. J Geochem Explor 144:367–373

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

    Article  CAS  Google Scholar 

  • Malik LA, Bashir A, Qureashi A et al (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521. https://doi.org/10.1007/s10311-019-00891-z

    Article  CAS  Google Scholar 

  • Mallick S, Sinam G, Mishra RK, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73(5):987–995

    CAS  Google Scholar 

  • Megharaj M, Naidu R (2017) Soil and brownfield bioremediation. Microb Biotechnol 10:1244–1249. https://doi.org/10.1111/1751-7915.12840

    Article  CAS  Google Scholar 

  • Menezes MB, Sabino CD, Franco MB, Maia EC, Albinati CC (2004) Assessment of workers’ contamination caused by air pollution exposure in industry using biomonitors. J Atmos Chem 49(1–3):403–414

    CAS  Google Scholar 

  • Mishra H, Sahu HB (2013) Environmental scenario of chromite mining at Sukinda valley—a review. Environ Eng Manag J4(4):287–292

    Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport, and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    CAS  Google Scholar 

  • Mudhoo A, Garg VK, Wang S (2012) Removal of heavy metals by biosorption. Environ Chem Lett 10:109–117. https://doi.org/10.1007/s10311-011-0342-2

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS et al (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359. https://doi.org/10.1007/s10311-018-0762-3

    Article  CAS  Google Scholar 

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr(VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediat 20:682–691. https://doi.org/10.1080/15226514.2017.1413332

    Article  CAS  Google Scholar 

  • Nieboer E, Jusys AA (1988) Biologic chemistry of chromium. In: Nriagu JO, Nierboor E (eds) Chromium in the natural and human environments. Wiley, New York, pp 21–79

    Google Scholar 

  • Nieman RH (1965) Expansion of bean leaves and its suppression by salinity. J Plant Physiol 40:156–161

    CAS  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012:1–8. https://doi.org/10.1155/2012/375843

    Article  CAS  Google Scholar 

  • Paiva LB, de Oliveira JG, Azevedo RA, Ribeiro M, da Silva G, Vitoria AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65(2–3):403–409

    CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(1):95–102

    CAS  Google Scholar 

  • Peng H, Guo J (2020) Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01058-x

    Article  Google Scholar 

  • Ramírez V, Baez A, López P, Bustillos MDR, Villalobos MA, Carreño R, Contreras JL, Muñoz Rojas J, Fuentes-Ramírez LE, Martínez J, Munive JA (2019) Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopislaevigata). Front Microbiol 10:1833. https://doi.org/10.3389/fmicb.2019.01833

    Article  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    CAS  Google Scholar 

  • Rosas I, Belmont R, Baez A, Villalobos-Pietrini R (1989) Some aspects of the environmental exposure to chromium residues in Mexico. Water Air Soil Pollut 48(3–4):463–475

    CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (1997) Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J Plant Nutr 20(4–5):473–483

    CAS  Google Scholar 

  • Samantary S (2002) Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47(10):1065–1072

    CAS  Google Scholar 

  • Sevgi E, Coral G, Gizir AM, Sagun MK (2009) Investigation of heavy metal resistance in some bacterial strains isolated from industrial soils. Turk J Biol 34:423–431

    Google Scholar 

  • Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774. https://doi.org/10.1016/j.eti.2020.100774

    Article  Google Scholar 

  • Shmitova LA (1980) Content of hexavalent chromium in the biological substrates of pregnant women and women in the immediate post-nasal period engaged in the manufacture of chromium compounds. Gig Tr Prof Zabol 2(2):33–35

    Google Scholar 

  • Silver S, Schottel J, Weiss A (2001) Bacterial resistance to toxic metals determined by extrachromosomal R factors. Int Biodeterior Biodegrad 48:263–281

    CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S et al (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254. https://doi.org/10.1007/s10311-013-0407-5

    Article  CAS  Google Scholar 

  • Sugiyama M (1992) Role of physiological antioxidants in Cr(VI)-induced cellular injury. Free Radic Biol Med 12:397–407

    CAS  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. CR Biol 333(8):597–607

    CAS  Google Scholar 

  • Swapna TH, Papathoti NK, Khan MY, Reddy G, Hameeda B (2016) Bioreduction of Cr(VI) by biosurfactant producing marine bacterium Bacillus subtilis SHB 13. J Sci Ind Res India 75:432–438

    CAS  Google Scholar 

  • TERI (2003) Hazardous waste management in India. A policy discussion forum base paper. Tata Energy Research Institute, New Delhi, India

  • Tiwary RK, Dhakate R, Rao VA, Singh VS (2005) Assessment and prediction of contaminant migration in ground water from chromite waste dump. J Environ Geol 48:420–429

    CAS  Google Scholar 

  • Ullrich CI, Novacky AJ (1990) Extra and intracellular pH and membrane potential changes induced by K, Cl, H(2)PO(4), and NO(3) uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol 94:1561s–1567s

    Google Scholar 

  • Vajpayee P, Sharma SC, Rai UN, Tripati RD, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaetrn. Chemosphere 39:2159–2169

    CAS  Google Scholar 

  • Vajpayee P, Tripati RD, Rai UN, Ali MB, Singh SN (2000) Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content of Nymphaea alba. Chemosphere 41:1075–1082

    CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. https://doi.org/10.1007/s10311-009-0268-0

    Article  CAS  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68(8):1563–1575

    CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    CAS  Google Scholar 

  • Westbrook J (1983) Chromium and chromium alloys. In: Grayson M (ed) Kirk-Othmer encyclopedia of chemical technology, vol 6, 3rd edn. Wiley-Interscience, New York, pp 54–82

    Google Scholar 

  • Yamini H, Devaraj N, Balachandran UN (2004) A Schiff base complex of chromium(III): an efficient inhibitor for the pathogenic and invasive potential of Shigella dysenteriae. J Inorg Biochem 98:387–392

    Google Scholar 

  • Yang P, Zhou XF, Wang LL, Li QS, Zhou T, Chen YK, Zhao ZY, He BY (2018) Effect of phosphate-solubilizing bacteria on the mobility of insoluble cadmium and metabolic analysis. Int J Environ Res Public Health 15(7):1330

    Google Scholar 

  • Ye S, Zeng G, Wu H, Zhang Chang Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Chen Zhang (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2017.1304357

    Article  Google Scholar 

  • Zaimoglu Z, Koksal N, Basci N, Kesici M, Gulen H, Budak F (2011) Antioxidative enzyme activities in Brassica juncea L. and Brassica oleracea L. plants under chromium stress. J Food Agric Environ 9(1):676–679

    CAS  Google Scholar 

  • Zhitkovich A (2005) Importance of chromium− DNA adducts in mutagenicity and toxicity of chromium (VI). Chem Res Toxicol 18(1):3–11

    CAS  Google Scholar 

  • Złoch M, Kowalkowski T, Tyburski J, Hrynkiewicz K (2017) Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals. Int J Phytoremedia 19:1150–1164. https://doi.org/10.1080/15226514.2017.1328396

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patitapaban Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P.K., Das, B.P. & Dash, P. Chromite mining pollution, environmental impact, toxicity and phytoremediation: a review. Environ Chem Lett 19, 1369–1381 (2021). https://doi.org/10.1007/s10311-020-01102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01102-w

Keywords

Navigation