Skip to main content

Advertisement

Log in

Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Background

Parallel magnetic resonance imaging (MRI) is a fast imaging technique that helps acquiring highly resolved images in space/time. Its performance depends on the reconstruction algorithm, which can proceed either in the k-space or in the image domain.

Objective and methods

To improve the performance of the widely used SENSE algorithm, 2D regularization in the wavelet domain has been investigated. In this paper, we first extend this approach to 3D-wavelet representations and the 3D sparsity-promoting regularization term, in order to address reconstruction artifacts that propagate across adjacent slices. The resulting optimality criterion is convex but nonsmooth, and we resort to the parallel proximal algorithm to minimize it. Second, to account for temporal correlation between successive scans in functional MRI (fMRI), we extend our first contribution to 3D + \(t\) acquisition schemes by incorporating a prior along the time axis into the objective function.

Results

Our first method (3D-UWR-SENSE) is validated on T1-MRI anatomical data for gray/white matter segmentation. The second method (4D-UWR-SENSE) is validated for detecting evoked activity during a fast event-related functional MRI protocol.

Conclusion

We show that our algorithm outperforms the SENSE reconstruction at the subject and group levels (15 subjects) for different contrasts of interest (motor or computation tasks) and two parallel acceleration factors (\(R=2\) and \(R=4\)) on \(2\times 2\times 3\,\hbox{mm}^3\) echo planar imaging (EPI) images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The overbar is used to distinguish the “true” data from a generic variable.

  2. SENSE reconstruction implemented by the Siemens scanner, software ICE, VB 17.

  3. http://brainvisa.info.

  4. http://www.fil.ion.ucl.ac.uk/spm/software/spm5.

  5. Available in the xjView toolbox of SPM5.

References

  1. Chaari L, Mériaux S, Badillo S, Ciuciu P, Pesquet JC (2011a) 3D wavelet-based regularization for parallel MRI reconstruction: impact on subject and group-level statistical sensitivity in fMRI. In: IEEE international symposium on biomedical imaging (ISBI). Chicago, USA, pp 460–464

  2. Kochunov P, Rivière D, Lancaster JL, Mangin JF, Cointepas Y, Glahn D, Fox P, Rogers J (2005) Development of high-resolution MRI imaging and image processing for live and post-mortem primates. Human Brain Mapping (HBM). Canada, Toronto, pp 1–3

  3. Rabrait C, Ciuciu P, Ribès A, Poupon C, Leroux P, Lebon V, Dehaene-Lambertz G, Bihan DL, Lethimonnier F (2008) High temporal resolution functional MRI using parallel echo volume imaging. Magn Reson Imaging 27:744–753

    Article  Google Scholar 

  4. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  5. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  6. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions GRAPPA. Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  7. Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509

    Article  Google Scholar 

  8. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195

    Article  PubMed  Google Scholar 

  9. Bilgin A, Trouard TP, Gmitro AF, Altbach MI (2008) Randomly perturbed radial trajectories for compressed sensing MRI. In: Meeting of the international society for magnetic resonance in medicine. Toronto, Canada, p 3152

  10. Yang A, Feng L, Xu J, Selesnick I, Sodickson D K, Otazo R (2012) Improved compressed sensing reconstruction with overcomplete wavelet transforms. In: Meeting of the international society for magnetic resonance in medicine, Melbourne, Australia, p 3769

  11. Holland DJ, Liu C, Song X, Mazerolle EL, Stevens MT, Sederman AJ, Gladden LF, D’Arcy RCN, Bowen CV, Beyea SD (2013) Compressed sensing reconstruction improves sensitivity of variable density spiral fMRI. Magn Reson Med 70:1634–1643

    Article  CAS  PubMed  Google Scholar 

  12. Liang D, Liu B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62:1574–84

    Article  PubMed  Google Scholar 

  13. Boyer C, Ciuciu P, Weiss P, Mériaux S (2012) HYR\(^2\)PICS: Hybrid regularized reconstruction for combined parallel imaging and compressive sensing in MRI. In: 9th international symposium on biomedical imaging (ISBI). Barcelona, Spain, pp 66–69

  14. Madore B, Glover GH, Pelc NJ (1999) Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 42:813–828

    Article  CAS  PubMed  Google Scholar 

  15. Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042

    Article  PubMed  Google Scholar 

  16. Lustig M, Santos JM, Donoho DL, Pauly JM (2001) k-t SPARSE: high frame rate dynamic MRI exploiting spatio-temporal sparsity. In: International society for magnetic resonance in medicine. Washington, USA, p 2420

  17. Wang J, Kluge T, Nittka M, Jellus V, Kuhn B, Kiefer B (2001) Parallel acquisition techniques with modified SENSE reconstruction mSENSE. In: 1st Wuzburg workshop on parallel imaging basics and clinical applications. Wuzburg, Germany, p 92

  18. Tsao J, Kozerke S, Boesiger P, Pruessmann KP (2005) Optimizing spatiotemporal sampling for k-t BLAST and k-t SENSE: application to high-resolution real-time cardiac steady-state free precession. Magn Reson Med 53:1372–1382

    Article  PubMed  Google Scholar 

  19. Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M (2005) k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54:1172–1184

    Article  PubMed  Google Scholar 

  20. Jung H, Ye JC, Kim EY (2007) Improved k-t BLAST and k-t SENSE using FOCUSS. Phys Med Biol 52:3201–3226

    Article  PubMed  Google Scholar 

  21. Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61:103–116

    Article  PubMed  Google Scholar 

  22. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dale AM (1999) Optimal experimental design for event-related fMRI. Hum Brain Mapp 8:109–114

    Article  CAS  PubMed  Google Scholar 

  24. Varoquaux G, Sadaghiani S, Pinel P, Kleinschmidt A, Poline JB, Thirion B (2010) A group model for stable multi-subject ICA on fMRI datasets. Neuroimage 51:288–299

    Article  CAS  PubMed  Google Scholar 

  25. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A (2012) Scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol 3:1–18

    Article  Google Scholar 

  26. Birn R, Cox R, Bandettini PA (2002) Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. Neuroimage 15:252–264

    Article  PubMed  Google Scholar 

  27. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878

    Article  CAS  PubMed  Google Scholar 

  28. de Zwart J, Gelderen PV, Kellman P, Duyn JH (2002) Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48:1011–1020

    Article  PubMed  Google Scholar 

  29. Preibisch C (2003) Functional MRI using sensitivity-encoded echo planar imaging (SENSE-EPI). Neuroimage 19:412–421

    Article  PubMed  Google Scholar 

  30. de Zwart J, Gelderen PV, Golay X, Ikonomidou VN, Duyn JH (2006) Accelerated parallel imaging for functional imaging of the human brain. NMR Biomed 19:342–351

    Article  PubMed  Google Scholar 

  31. Utting JF, Kozerke S, Schnitker R, Niendorf T (2010) Comparison of k-t SENSE/k-t BLAST with conventional SENSE applied to BOLD fMRI. J Magn Reson Imaging 32:235–241

    Article  PubMed  Google Scholar 

  32. Liang ZP, Bammer R, Ji J, Pelc NJ, Glover GH (2002) Making better SENSE: wavelet denoising, Tikhonov regularization, and total least squares. In: International society for magnetic resonance in medicine. Hawaï, USA, p 2388

  33. Ying L, Xu D, Liang ZP (2004) On Tikhonov regularization for image reconstruction in parallel MRI. In: IEEE engineering in medicine and biology society. San Francisco, USA, pp 1056–1059

  34. Zou YM, Ying L, Liu B (2008) SparseSENSE: application of compressed sensing in parallel MRI. In: IEEE international conference on technology and applications in biomedicine. Shenzhen, China, pp 127–130

  35. Chaari L, Pesquet JC, Benazza-Benyahia A, Ciuciu P (2008) Autocalibrated parallel MRI reconstruction in the wavelet domain. In: IEEE international symposium on biomedical imaging (ISBI). Paris, France, pp 756–759

  36. Liu B, Abdelsalam E, Sheng J, Ying L (2008a) Improved spiral SENSE reconstruction using a multiscale wavelet model. In: IEEE international symposium on biomedical imaging (ISBI). Paris, France, pp 1505–1508

  37. Chaari L, Pesquet JC, Benazza-Benyahia A, Ciuciu P (2011b) A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging. Med Image Anal 15:185–2010

    Article  PubMed  Google Scholar 

  38. Chaari L, Mériaux S, Pesquet JC, Ciuciu P (2010a) Impact of the parallel imaging reconstruction algorithm on brain activity detection in fMRI. In: International symposium on applied sciences in biomedical and communication technologies (ISABEL). Italy, Rome, pp 1–5

  39. Jakob P, Griswold M, Breuer F, Blaimer M, Seiberlich N (2006) A 3D GRAPPA algorithm for volumetric parallel imaging. In: Scientific meeting international society for magnetic resonance in medicine, Seattle, USA, p 286

  40. Aguirre GK, Zarahn E, D’Esposito M (1997) Empirical analysis of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. Neuroimage 5:199–212

    Article  CAS  PubMed  Google Scholar 

  41. Zarahn E, Aguirre GK, D’Esposito M (1997) Empirical analysis of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage 5:179–197

    Article  CAS  PubMed  Google Scholar 

  42. Purdon PL, Weisskoff RM (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp 6:239–249

    Article  CAS  PubMed  Google Scholar 

  43. Woolrich M, Ripley B, Brady M, Smith S (2001) Temporal autocorrelation in univariate linear modelling of fMRI data. Neuroimage 14:1370–1386

    Article  CAS  PubMed  Google Scholar 

  44. Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002) A general statistical analysis for fMRI data. Neuroimage 15:1–15

    Article  CAS  PubMed  Google Scholar 

  45. Penny WD, Kiebel S, Friston KJ (2003) Variational Bayesian inference for fMRI time series. Neuroimage 19:727–741

    Article  PubMed  Google Scholar 

  46. Chaari L, Vincent T, Forbes F, Dojat M, Ciuciu P (2013) Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach. IEEE Trans Med Imaging 32:821–837

    Article  PubMed Central  PubMed  Google Scholar 

  47. Combettes PL, Pesquet JC (2008) A proximal decomposition method for solving convex variational inverse problems. Inverse Probl 24:27

    Article  Google Scholar 

  48. Sodickson DK (2000) Tailored SMASH image reconstructions for robust in vivo parallel MR imaging. Magn Reson Med 44:243–251

    Article  CAS  PubMed  Google Scholar 

  49. Keeling SL (2003) Total variation based convex filters for medical imaging. Appl Math Comput 139:101–1195

    Article  Google Scholar 

  50. Liu B, King K, Steckner M, Xie J, Sheng J, Ying L (2008b) Regularized sensitivity encoding (SENSE) reconstruction using Bregman iterations. Magn Reson Med 61:145–152

    Article  Google Scholar 

  51. Guerquin-Kern M, Haberlin M, Pruessmann KP, Unser M (2011) A fast wavelet-based reconstruction method for magnetic resonance imaging. IEEE Trans Med Imaging 30:1649–1660

    Article  CAS  PubMed  Google Scholar 

  52. Sümbül U, Santos JM, Pauly JM (2009) Improved time series reconstruction for dynamic magnetic resonance imaging. IEEE Trans Med Imaging 28:1093–1104

    Article  PubMed Central  PubMed  Google Scholar 

  53. Pinel P, Thirion B, Mériaux S, Jobert A, Serres J, Le Bihan D, Poline JB, Dehaene S (2007) Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neurosci 8:1–18

    Article  Google Scholar 

  54. Daubechies I (1992) Ten lectures on wavelets. In: Society for industrial and applied mathematics. Philadelphia

  55. Dehaene S (1999) Cerebral bases of number processing and calculation. In: Gazzaniga M (ed) The new cognitive neurosciences, chap 68. MIT Press, Cambridge, pp 987–998

    Google Scholar 

  56. Nichols TE, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12:419–446

    Article  PubMed  Google Scholar 

  57. Brett M, Penny W, Kiebel S (2004) Introduction to random field theory. In: Frackowiak RSJ, Friston KJ, Fritch CD, Dolan RJ, Price CJ, Penny WD (eds) Human brain function, 2nd edn. Academic Press, New York, pp 867–880

    Google Scholar 

  58. Badillo S, Desmidt S, Ciuciu P (2010) A group level fMRI comparative study between 12 and 32 channel coils at 3 Tesla. In: 16th annual meeting of the organization for human brain mapping (HBM). Barcelona, Spain, p 937

  59. Chaari L, Pesquet JC, Tourneret JY, Ciuciu P, Benazza-Benyahia A (2010b) A hierarchical Bayesian model for frame representation. IEEE Trans Signal Process 5560–5571

  60. Roche A (2011) A four-dimensional registration algorithm with application to joint correction of motion and slice timing in fMRI. IEEE Trans Med Imaging 30:1546–1554

    Article  PubMed  Google Scholar 

  61. Van De Ville D, Seghier M, Lazeyras F, Blu T, Unser M (2007) WSPM: wavelet-based statistical parametric mapping. Neuroimage 37:1205–1217

    Article  Google Scholar 

  62. Moreau JJ (1965) Proximité et dualité dans un espace hilbertien. Bull de la Société Math de Fr 93:273–299

    Google Scholar 

  63. Chaux C, Combettes P, Pesquet JC, Wajs VR (2007) A variational formulation for frame-based inverse problems. Inverse Probl 23:1495–1518

    Article  Google Scholar 

  64. Combettes PL, Wajs VR (2005) Signal recovery by proximal forward–backward splitting. Multiscale Model Simul 4:1168–1200

    Article  Google Scholar 

  65. Combettes PL, Pesquet JC (2010) Proximal splitting methods in signal processing. In: Bauschke HH, Burachik R, Combettes PL, Elser V, Luke DR, Wolkowicz H (eds) Fixed-point algorithms for inverse problems in science and engineering, chap 1. Springer, New York, pp 185–212

    Google Scholar 

  66. Combettes PL, Pesquet JC (2007) A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J Sel Top Signal Process 1:564–574

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02. The work of Philippe Ciuciu was partially supported by the CIMI (Centre International de Mathmatiques et d’Informatique) Excellence program during the winter and spring of 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Chaari.

Additional information

Part of this work has been presented at the IEEE ISBI 2011 conference [1].

Appendices

Appendix

Optimization procedure for the 4D reconstruction

The minimization of \(\mathcal {J}_{{\rm ST}}\) in Eq. (8) is performed by resorting to the concept of proximity operators [62], which was found to be fruitful in a number of recent works in convex optimization [6365]. In what follows, we recall the definition of a proximity operator.

Definition 1

([62]) Let \(\varGamma _0(\chi )\) be the class of proper lower semicontinuous convex functions from a separable real Hilbert space \(\chi\) to \(]\!-\infty ,+\infty ]\) and let \(\varphi \in \varGamma _0(\chi )\). For every \(\mathsf {x} \in \chi\), the function \(\varphi +\Vert \cdot -\mathsf {x} \Vert ^2/2\) achieves its infimum at a unique point denoted by \({\rm prox}_{\varphi }\mathsf {x}\). The operator \({\rm prox}_{\varphi }\; : \; \chi \rightarrow \chi\) is the proximity operator of \(\varphi\).

In this work, as the observed data are complex-valued, the definition of proximity operators is extended to a class of convex functions defined for complex-valued variables. For the function

$$\begin{aligned} \varPhi :\mathbb {C}^K&\rightarrow ]\!-\infty ,+\infty ] \;, \; x \mapsto \phi ^{{Re} }\left( {Re} (x)\right) + \phi ^{{Im}}\left( {Im}(x)\right) , \end{aligned}$$
(12)

where \(\phi ^{{Re} }\) and \(\phi ^{{Im}}\) are functions in \(\varGamma _0({\mathbb R}^K)\) and \({Re} (x)\) [respectively \({Im}(x)\)] is the vector of the real parts (respectively imaginary parts) of the components of \(x\in \mathbb {C}^K\), the proximity operator is defined as

$$\begin{aligned} {{\rm prox}}_{\varPhi } :\mathbb {C}^K&\rightarrow \mathbb {C}^K \; , \; x \mapsto {{\rm prox}}_{\phi ^{{Re} }}({Re} (x))+\imath {\rm prox}_{\phi ^{{Im}}}\left( {Im}(x)\right) . \end{aligned}$$
(13)

We now provide the expressions of proximity operators involved in our reconstruction problem.

Proximity operator of the data fidelity term

According to standard rules on the calculation of proximity operators [65, Table 1.1] while denoting \({\rho ^{t}} = T^*\zeta ^{t}\), the proximity operator of the data fidelity term \(\mathcal {J}_{\rm WLS}\) is given for every vector of coefficients \(\zeta ^t\) (with \(t\in \{1,\ldots ,N_r\}\)) by \({{\rm prox}}_{\mathcal{J}_{{\rm WLS}}}(\zeta ^t) = T {u^t}\), where the image \(u^t\) is such that \(\forall \mathbf {r}\in \{1,\ldots ,X\}\times \{1,\ldots ,Y/R\}\times \{1,\ldots ,Z\}\),

$$\begin{aligned} {\varvec{u}}^t(\mathbf {r})= \big ({\varvec{I}}_R + 2{\varvec{S}}^{{\tiny \mathsf H }}(\mathbf {r}){\varvec{\varPsi }}^{-1}{\varvec{S}}(\mathbf {r}) \big )^{-1} \big ({\varvec{\rho }^{t}}(\mathbf {r}) + 2{\varvec{S}}^{{\tiny \mathsf H }}(\mathbf {r}){\varvec{\varPsi }}^{-1}{\varvec{d}}^t(\mathbf {r})\big ). \end{aligned}$$
(14)

Proximity operator of the spatial regularization function

According to [37], for every resolution level \(j\) and orientation \(o\), the proximity operator of the spatial regularization function \(\varPhi _{o,j}\) is given by

$$\begin{aligned}&\forall \xi \in {\mathbb C},\qquad {{\rm prox}}_{\varPhi _{o,j}} \xi = \dfrac{{{\rm sign}}({Re} (\xi -\mu _{o,j}))}{\beta _{o,j}^{{Re} }+1}\max \{|{Re} (\xi -\mu _{o,j})|- \alpha _{o,j}^{{Re} },0\}\nonumber \\&\quad +\,\imath \dfrac{{{\rm sign}}({Im}(\xi -\mu _{o,j}))}{\beta _{o,j}^{{Im}}+1}\max \{|{Im}(\xi -\mu _{o,j})|- \alpha _{o,j}^{{Im}},0\}+\mu _{o,j} \end{aligned}$$
(15)

where the \({\rm sign}\) function is defined by \({\rm sign}(\xi )= 1\) if \(\xi \ge 0\) and \(-\)1 otherwise.

Proximity operator of the temporal regularization function

A simple expression of the proximity operator of function \(h\) is not available. We thus propose to split this regularization term as a sum of two more tractable functions \(h_1\) and \(h_2\):

$$\begin{aligned} h_1(\zeta ) =&\kappa \sum _{t = 1}^{N_r/2} \Vert T^*\zeta ^{2t} - T^*\zeta ^{2t-1} \Vert _p^p \end{aligned}$$
(16)
$$\begin{aligned} h_2(\zeta ) =&\kappa \sum _{t = 1}^{N_r/2-1} \Vert T^*\zeta ^{2t+1} - T^*\zeta ^{2t} \Vert _p^p. \end{aligned}$$
(17)

Since \(h_1\) (respectively \(h_2\)) is separable with respect to the time variable \(t\), its proximity operator can easily be calculated based on the proximity operator of each of the involved terms in the sum of Eq. (16) [respectively Eq. (17)]. Indeed, let us consider the following function

$$\begin{aligned} \varPsi : {\mathbb C}^K \times {\mathbb C}^K&\longrightarrow {\mathbb R}\; , \; (\zeta ^t,\zeta ^{t-1}) \mapsto \kappa \Vert T^*\zeta ^t - T^*\zeta ^{t-1} \Vert _p^p = \psi \circ H \left( \zeta ^t,\zeta ^{t-1}\right) , \end{aligned}$$
(18)

where \(\psi = \kappa \Vert T^*\cdot \Vert _p^p\) and \(H\) is the linear operator defined as

$$\begin{aligned} H: {\mathbb C}^K \times {\mathbb C}^K&\longrightarrow {\mathbb C}^K \; , \; (a,b) \mapsto a-b. \end{aligned}$$
(19)

Its associated adjoint operator \(H^*\) is therefore given by

$$\begin{aligned} H^*: {\mathbb C}^K&\longrightarrow {\mathbb C}^K \times {\mathbb C}^K \; , \; a \mapsto (a,-a). \end{aligned}$$
(20)

Since \(H H^* = 2\mathrm {Id}\), the proximity operator of \(\varPsi\) can easily be calculated using [66, Prop. 11]:

$$\begin{aligned} {{\rm prox}}_{\varPsi } = {{\rm prox}}_{\psi \circ H} = {{\rm Id}} + \dfrac{1}{2}H^*\circ ( {{\rm prox}}_{2\psi } - {\rm Id}) \circ H. \end{aligned}$$
(21)

The calculation of \({\rm prox}_{2\psi }\) is discussed in [62].

Parallel proximal algorithm (PPXA)

The function to be minimized has been re-expressed as

$$\begin{aligned} \mathcal {J}_{\rm ST} (\zeta ) =&\sum _{t = 1}^{N_r} \sum _{\mathbf {r}\in \{1,\ldots ,X\} \times \{1,\ldots ,Y/R\}\times \{1,\ldots ,Z\}} \Vert {\varvec{d}}^t({\varvec{r}}) - {\varvec{S}}({\varvec{r}})(T^*\zeta ^t)({\varvec{r}}) \Vert ^2_{{\varvec{\varPsi }}^{-1}}\nonumber \\&+\,g(\zeta ) + h_1(\zeta ) + h_2(\zeta ). \end{aligned}$$
(22)

Since \(\mathcal {J}_{\rm ST}\) is made up of more than two non-necessarily differentiable terms, an appropriate solution for minimizing such an optimality criterion is PPXA [47]. In particular, it is important to note that this algorithm does not require subiterations, as was the case for the constrained optimization algorithm proposed in [37]. In addition, the computations in this algorithm can be performed in a parallel manner and the convergence of the algorithm to an optimal solution to the minimization problem is guaranteed. The resulting algorithm for the minimization of the optimality criterion in Eq. (22) is given in Algorithm 1. In this algorithm, the weights \(\omega _i\) have been fixed to \(1/4\) for every \(i\in \{1,\ldots ,4\}\). The parameter \(\gamma\) has been set to 200, since this value was observed to lead to the fastest convergence in practice. The stopping parameter \(\varepsilon\) has been set to \(10^{-4}\) and the algorithm typically converges in less than 50 iterations.

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaari, L., Ciuciu, P., Mériaux, S. et al. Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI. Magn Reson Mater Phy 27, 509–529 (2014). https://doi.org/10.1007/s10334-014-0436-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0436-5

Keywords

Navigation