Skip to main content

Advertisement

Log in

Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The Hazel Grouse Bonasa bonasia is strongly affected by forest dynamics, and populations in many areas within Europe are declining. As a result of the ‘wilding’ concept implemented in the National Park Bavarian Forest, this area is one of the refuges for the species in Germany. Even though the effects of prevailing processes make the situation there particularly interesting, no recent investigation about habitat selection in the rapidly changing environment of the national park has been undertaken. We modelled the species–habitat relationship to derive the important habitat features in the national park as well as factors and critical threshold for monitoring, and to evaluate the predictive power of models based on field surveys compared to an analysis of infrared aerial photographs. We conducted our surveys on 49 plots of 25 ha each where Hazel Grouse was recorded and on an equally sized set of plots with no grouse occurrence, and used this dataset to build a predictive habitat-suitability model using logistic regression with backward stepwise variable selection. Habitat heterogeneity, stand structure, presence of mountain ash and willow, root plates, forest aisles, and young broadleaf stands proved to be predictive habitat variables. After internal validation via bootstrapping, our model shows an AUC value of 0.91 and a correct classification rate of 87%. Considering the methodological difficulties attached to backward selection, we applied Bayesian model averaging as an alternative. This multi-model approach also yielded similar results. To derive simple thresholds for important predictors as a basis for management decisions, we alternatively ran tree-based modelling, which also leads to a very similar selection of predictors. Performance of our different survey approaches was assessed by comparing two independent models with a model including both data resources: one constructed only from field survey data, the other based on data derived from aerial photographs. Models based on field data seem to perform slightly better than those based on aerial photography, but models using both predictor datasets provided the highest predictive accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araújo MB, New M (2006) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi:10.1016/j.tree.2006.09.010

    PubMed  Google Scholar 

  • Austin MP (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Modell 200:1–19. doi:10.1016/j.ecolmodel.2006.07.005

    Google Scholar 

  • Bässler C (2004) Das Klima im Nationalpark Bayerischer Wald, Darstellung, Entwicklung und Auswirkung, 30 Jahre Klimastation Waldhäuser. Ms Diplomarbeit, Universität Rostock, Universitätsbibliothek Rostock (in German)

  • Bässler C, Förster B, Moning C, Müller J (2008a) The BIOKLIM-Project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework. Waldokologie Online (in press)

  • Bergmann H-H, Klaus S, Müller F, Scherzinger W, Swenson JE, Wiesner J (1996) Die Haselhühner, Bonasa bonasia und B. sewerzowi. Die Neue Brehm-Bücherei, Westarp Wissenschaften, Magdeburg, Germany (in German)

  • Beven KJ, Kirkby MJ (1979) A physically-based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Google Scholar 

  • Bivand R (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38:23–40. doi:10.1111/j.0016-7363.2005.00672.x

    Google Scholar 

  • Bjørnstad ON, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8:53–70. doi:10.1023/A:1009601932481

    Google Scholar 

  • Blattner M (1998) Der Arealschwund des Haselhuhns Bonasa bonasia in der Nordschweiz. (In German with an English summary: the range loss of Hazel Grouse Bonasa bonasia in northwestern Switzerland). Ornith Beob 95:11–38

    Google Scholar 

  • Borboroglu PG, Yorio P, Boersma PD, Valle HD, Bertellotti M (2002) Habitat use and breeding distribution of Magellanic Penguins in Northern San Jorge Gulf, Patagonia, Argentina. Auk 119:233–239. doi:10.1642/0004-8038(2002)119[0233:HUABDO]2.0.CO;2

    Google Scholar 

  • Bühlmann P, Hothorn T (2007) Boosting algorithms: regularization, prediction and model fitting. Stat Sci 22:477–505. doi:10.1214/07-STS242

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davis R, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi:10.1111/j.2007.0906-7590.05171.x

    Google Scholar 

  • Dormann CF, Purschke O, García-Marquez J, Lautenbach S, Schröder B (2008) Components of uncertainty in species distribution analysis: a case study of the Great Grey Shrike Lanius excubitor L. Ecology 89:3371–3386. doi:10.1890/07-1772.1

    PubMed  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Google Scholar 

  • Everitt BS, Hothorn T (2006) A handbook of statistical analyses using R. Chapman & Hall, Boca Raton

    Google Scholar 

  • Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modeling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modeling. Biodivers Conserv 11:2275–2307. doi:10.1023/A:1021302930424

    Google Scholar 

  • Freeman EA, Moisen G (2008) Presence Absence: an R package for presence absence analysis. J Stat Softw 23:1–31

    Google Scholar 

  • Gibson LA, Wilson BA, Cahill DM, Hill J (2004) Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach. J Appl Ecol 41:213–223. doi:10.1111/j.0021-8901.2004.00896.x

    Google Scholar 

  • Gottschalk TK, Diekötter T, Ekschmitt K, Weinmann B, Kuhlmann F, Purtauf T, Dauber J, Wolters V (2007) Impact of agricultural subsidies on biodiversity at the landscape level. Landscape Ecol 22:643–656. doi:10.1007/s10980-006-9060-8

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2915. doi:10.1890/02-3114

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Google Scholar 

  • Harrell FE Jr (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Statist 15:651–674. doi:10.1198/106186006X133933

    Google Scholar 

  • Jensen RA, Madsen J, O’Connel M, Wisz MS, Tommervik H, Mehlum F (2008) Prediction of the distribution of Arctic-nesting pink-footed geese under a warmer climate scenario. Glob Change Biol 14:1–10

    Google Scholar 

  • Kämpfer-Lauenstein A (1995) Mehr Wildnis für das Haselhuhn! Nationalpark 86:6–9 (in German)

    Google Scholar 

  • Klaus S (1995) Hazel Grouse in the Bohemian Forest: results of a twenty-year study. Proc Intern Symp Grouse 6:27–33

    Google Scholar 

  • Klaus S, Bergmann H-H (2004) Situation der waldbewohnenden Raufußhuhnarten Haselhuhn Bonasa bonasia und Auerhuhn Tetrao urogallus in Deutschland - Ökologie, Verbreitung, Gefährdung und Schutz. Vogelwelt 125:283–295

    Google Scholar 

  • Li X, Li D, Li Y, Ma Z, Zhai T (2002) Habitat evaluation for crested ibis: a GIS-based approach. Ecol Res 17:565–573. doi:10.1046/j.1440-1703.2002.00515.x

    Google Scholar 

  • Lieser M (1994) Untersuchungen der Lebensraumansprüche des Haselhuhns (Bonasa bonasia L. 1758) im Schwarzwald im Hinblick auf Maßnahmen zur Arterhaltung. (In German with English summary: Habitat requirements of Hazel Grouse (Bonasa bonasia L. 1758) in the Black Forest with regard to the species’ conservation). Bezirksstelle für Naturschutz und Landschaftspflege Freiburg und Kuratorium für avifaunistische Forschung in Baden-Würtemberg e V,Ökologie der Vögel. Ecol Birds 16:1–117

    Google Scholar 

  • MacFaden SW, Capen DE (2002) Avian habitat relationships at multiple scales in a New England Forest. For Sci 48:243–253

    Google Scholar 

  • MacNally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671. doi:10.1023/A:1008985925162

    Google Scholar 

  • MacNally R, Walsh CJ (2004) Hierarchical partitioning public-domain software. Biodivers Conserv 13:659–660. doi:10.1023/B:BIOC.0000009515.11717.0b

    Google Scholar 

  • Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecol Modell 120:337–347. doi:10.1016/S0304-3800(99)00113-1

    Google Scholar 

  • Mathys L, Zimmermann NE, Zbinden N, Suter W (2006) Identifying habitat suitability for hazel grouse Bonasa bonasia at the landscape scale. Wildl Biol 12:357–366. doi:10.2981/0909-6396(2006)12[357:IHSFHG]2.0.CO;2

    Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with kappa statistic. Ecol Modell 62:275–293. doi:10.1016/0304-3800(92)90003-W

    Google Scholar 

  • Moning C, Müller J (2008) Environmental key factors and their thresholds for the avifauna of temperate montane forests. For Ecol Manage 256:1198–1208. doi:10.1016/j.foreco.2008.06.018

    Google Scholar 

  • Müller J, Hothorn T (2004) Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests. Eur J For Res 123:219–228. doi:10.1007/s10342-004-0035-5

    Google Scholar 

  • Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P (2008) The European spruce bark beetle Ips typographus (L.) in a national park—from pest to keystone species. Biodivers Conserv 17:2979–3001. doi:10.1007/s10531-008-9409-1

    Google Scholar 

  • Müller J, Pöllath J, Moshammer R, Schröder B (2009) Predicting the occurrence of middle spotted woodpecker Dendrocopos medius on a regional scale, using forest inventory data. For Ecol Manage (in press). doi:10.1016/j.foreco.2008.09.023

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Google Scholar 

  • Olaya V (2004) A gentle introduction to SAGA GIS. www.downloads.sourceforge.net

  • Oppel S, Schaefer HM, Schmidt V, Schröder B (2004) Habitat selection by the Pale-headed brush-finch, Atlapetes pallidiceps, in southern Ecuador: implications for conservation. Biol Conserv 118:33–40. doi:10.1016/j.biocon.2003.07.006

    Google Scholar 

  • Panchapakesan J, Green RE, Norris K, Vogiatzakis IN, Bartsch A, Wotton SR, Bowden CGR, Griffiths GH, Pain D, Rahmani AR (2004) Modelling habitat selection and distribution of the critically endangered Jerdon’s courser Rhinoptilus bitorquatus in scrub jungle: an application of a new tracking method. J Appl Ecol 41:224–237. doi:10.1111/j.0021-8901.2004.00897.x

    Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133:225–245. doi:10.1016/S0304-3800(00)00322-7

    Google Scholar 

  • Pearce J, Ferrier S (2001) The practical value of modelling relative abundance of species for regional conservation planning: a case study. Biol Conserv 98:33–43. doi:10.1016/S0006-3207(00)00139-7

    Google Scholar 

  • Ch Rädlinger, Singer D (1995) Deutsche Nationalparke Band 1 Bayerischer Wald. Vehling, Werl (in German)

    Google Scholar 

  • Raftery A, Hoeting J, Volinsky C, Painter I, Yeung KY (2008) The BMA Package Version 3.03., www.r-project.org

  • Reineking B, Schröder B (2003) Computer-intensive Methods in the Analysis of Species-habitat Relationships. GfÖ Arbeitskreis Theorie in der Ökologie 2003: Gene, Bits und Ökosysteme, P Lang, Frankfurt/M, pp 165–182

  • Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Modell 193:675–690. doi:10.1016/j.ecolmodel.2005.10.003

    Google Scholar 

  • Rittershofer F (1994) Waldpflege und Waldbau. Für Studierende und Praktiker. Rittershofer, Freising (in German)

    Google Scholar 

  • Saveraid EH, Debinski DM, Kindscher K, Jakubauskas ME (2001) A comparison of satellite data and landscape variables in predicting bird species occurrences in the Greater Yellowstone Ecosystem, USA. Landscape Ecol 16:71–83. doi:10.1023/A:1008119219788

    Google Scholar 

  • Scherzinger W (1976) Rauhfuß-Hühner. In: Nationalpark Bayerischer Wald, Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten (in German)

  • Schröder B (2000) Habitatmodelle für ein modernes Naturschutzmanagement. In: Albrecht Gnauck (Hrsg.): Theorie und Modellierung von Ökosystemen, Workshop Kölpinsee 2000, Shaker, Aachen, 201–224 (in German)

  • Schröder B, Reineking B (2004) Modellierung der Art-Habitat-Beziehung - ein Überblick über die Verfahren der Habitatmodellierung. UFZ-Bericht 9/2004:5–26. in German

    Google Scholar 

  • Seoane J, Bustamante J, Díaz-Delgado R (2004) Competing roles for landscape, vegetation, topography and climate in predictive models of bird distribution. Ecol Modell 171:209–222. doi:10.1016/j.ecolmodel.2003.08.006

    Google Scholar 

  • Steyerberg EW, Harrell, Frank EJ, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001) Internal validation of predictive models - Efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781. doi:10.1016/S0895-4356(01)00341-9

  • Storch I (2000) Conservation status and threats to grouse worldwide: an overview. Wildl Biol 6:195–204

    Google Scholar 

  • Swenson JE (1991) Social organisation of Hazel Grouse and ecological factors influencing it. PhD thesis, Univ Alberta, Edmonton

  • Swenson JE (1993) The importance of alder to hazel grouse in Fennoscandian boreal forest: evidence from four levels of scale. Ecography 16:37–46. doi:10.1111/j.1600-0587.1993.tb00057.x

    Google Scholar 

  • Swenson JE (1995) The ecology of Hazel Grouse and management of its habitat. Naturschutzreport 10:227–238

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi:10.1126/science.3287615

    CAS  Google Scholar 

  • Verbyla DL, Litvaitis JA (1989) Resampling methods for evaluation of classification accuracy of wildlife habitat models. Environ Manage 13:783–787. doi:10.1007/BF01868317

    Google Scholar 

  • von dem Bussche J, Spaar R, Schmid H, Schröder B (2008) Modelling the recent and potential future spatial distribution of ring ouzel Turdus torquatus and blackbird T. merula in Switzerland. J Ornithol (in press)

  • Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manage 47:893–901. doi:10.2307/3808148

    Google Scholar 

  • Walentowski H, Ewald E, Fischer A, Kölling C, Türk W (2004) Handbuch der natürlichen Waldgesellschaften Bayerns. Geobotanica, Freising (in German)

    Google Scholar 

  • Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189. doi:10.1111/j.1365-2656.2006.01141.x

    PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank all those who contributed to this study in the field and in analysis, especially T. Hothorn and W. Scherzinger. A. Liston and K. Brune assisted with linguistic improvement of the manuscript. We thank two anonymous reviewers for helpful comments. We certify that field measurements were carried out in compliance with European and national legal requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Müller.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Schröder, B. & Müller, J. Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J Ornithol 150, 717–732 (2009). https://doi.org/10.1007/s10336-009-0390-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-009-0390-6

Keywords

Navigation