Skip to main content
Log in

SPE of Tanshinones from Salvia miltiorrhiza Bunge by using Imprinted Functionalized Ionic Liquid-Modified Silica

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Ionic liquid-modified silica, with functional groups based on imidazole as the cation, was obtained. A molecular imprinting technique was introduced to form the order of functional groups. The selectivity of the obtained ionic liquid-modified silica was successfully used as a special imprinted sorbent in the solid-phase extraction to isolate cryptotanshinone, tanshinone I and tanshinone IIA from Salvia miltiorrhiza Bunge. Several washing and elution solvents with different polarities were evaluated. The ionic liquid-modified silica as the sorbent exhibited a higher selectivity than blank ionic liquid-modified silica, traditional silica and C18 cartridges. A quantitative analysis was conducted by liquid chromatography with a C18 column and methanol/water (75:25, v/v, containing 0.5% acetic acid) as the mobile phase. A good linearity was obtained from 0.5 × 10−4 to 0.1 mg mL−1 (r 2 > 0.99) with relative standard deviations that were less than 4.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luo HW, Wu BJ, Wu MY, Yong ZG (1985) Phytochemistry 24:815–817. doi:10.1016/S0031-9422(00)84900-6

    Article  CAS  Google Scholar 

  2. Zhang HY, Hu ZD, Yang GL, Sun HW (1999) Chromatographia 49:219–222. doi:10.1007/BF02575290

    Article  CAS  Google Scholar 

  3. Tian G, Zhang Y, Zhang T, Yang F, Ito Y (2000) J Chromatogr A 904:107–111. doi:10.1016/S0021-9673(00)00916-X

    Article  CAS  Google Scholar 

  4. Okamura N, Kobayashi K, Yagi A, Kitazawa T, Shimomura K (1991) J Chromatogr A 542:317–326. doi:10.1016/S0021-9673(01)88770-7

    Article  CAS  Google Scholar 

  5. Dean JR, Liu B, Price R (1998) J Chromatogr A 799:343–348. doi:10.1016/S0021-9673(97)01087-X

    Article  CAS  Google Scholar 

  6. Pan X, Niu G, Liu H (2001) J Chromatogr A 922:371–375. doi:10.1016/S0021-9673(01)00949-9

    Article  CAS  Google Scholar 

  7. Wells MJM, Yu LZ (2000) J Chromatogr A 885:237–250. doi:10.1016/S0021-9673(00)00206-5

    Article  CAS  Google Scholar 

  8. Poole CF, Wilson ID (2000) J Chromatogr A 885:1. doi:10.1016/S0021-9673(00)00511-2

    Article  CAS  Google Scholar 

  9. Li Z, Chang X, Zou X, Zhu X, Nie R, Hu Z, Li R (2009) Anal Chim Acta 632:272–277. doi:10.1016/j.aca.2008.11.001

    Article  CAS  Google Scholar 

  10. Pyrzyñska K, Trojanowicz M (1999) Crit Rev Anal Chem 29:313–321. doi:10.1080/10408349891199329

    Article  Google Scholar 

  11. Cai Y, Jiang G, Liu J, Zhou Q (2003) Anal Chem 75:2517–2521. doi:10.1021/ac0263566

    Article  CAS  Google Scholar 

  12. Pandey S (2006) Anal Chim Acta 556:38–45. doi:10.1016/j.aca.2005.06.038

    Article  CAS  Google Scholar 

  13. Liu J, Jönsson JÅ, Jiang G (2005) Trends Anal Chem 24:20–27. doi:10.1016/j.trac.2004.09.005

    Article  Google Scholar 

  14. Nara SJ, Harjani JR, Salunkhe MM (2001) J Org Chem 66:8616–8620. doi:10.1021/jo016126b

    Article  CAS  Google Scholar 

  15. Potewar TM, Nadaf RN, Daniel T, Lahoti RJ, Srinivasan KV (2005) Synth Commun 35:231–241. doi:10.1081/SCC-200048433

    Article  CAS  Google Scholar 

  16. Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JJH (2002) J Am Chem Soc 124:5962–5963. doi:10.1021/ja026290w

    Article  CAS  Google Scholar 

  17. Armstrong DW, He L, Liu YS (1999) Anal Chem 71:3873–3876. doi:10.1021/ac990443p

    Article  CAS  Google Scholar 

  18. Liu J, Jiang G, Chi Y, Cai Y, Zhou Q, Hu JT (2003) Anal Chem 75:5870–5876. doi:10.1021/ac034506m

    Article  CAS  Google Scholar 

  19. Khachatryan KS, Smirnova SV, Torocheshnikova II, Shvedene NV, Formanovsky AA, Pletnev IV (2005) Anal Bioanal Chem 381:464–470. doi:10.1007/s00216-004-2872-y

    Article  CAS  Google Scholar 

  20. Polyakova Y, Jin Y, Zheng J, Row KH (2006) J Liq Chromatogr Related Technol 29:1687–1701. doi:10.1080/10826070600716769

    Article  CAS  Google Scholar 

  21. Kim MJ, Choi MY, Lee JK, Ahn Y (2003) J Mol Catal B Enzymatic 26:115–118. doi:10.1016/j.molcatb.2003.04.001

    Article  Google Scholar 

  22. Zhang D, Bai S, Ren M, Yan S (2008) Food Chem 109:72–80. doi:10.1016/j.foodchem.2007.12.020

    Article  CAS  Google Scholar 

  23. Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2008) Tetrahedron Lett 49:4865–4868. doi:10.1016/j.tetlet.2008.06.014

    Article  CAS  Google Scholar 

  24. Li M, Pham PJ, Pittman CU, Li T (2009) Microporous Mesoporous Mater 117:436–443. doi:10.1016/j.micromeso.2008.07.017

    Article  CAS  Google Scholar 

  25. Li M, Pham PJ, Wang T, Pittman CU, Li T (2009) Sep Purif Technol 66:1–8. doi:10.1016/j.seppur.2008.12.009

    Article  CAS  Google Scholar 

  26. Qiu H, Jiang Q, Wei Z, Wang X, Liu X, Jiang S (2007) J Chromatogr A 1163:63–69. doi:10.1016/j.chroma.2007.06.001

    Article  CAS  Google Scholar 

  27. Qiu H, Jiang S, Liu X (2006) J Chromatogr A 1103:265–270. doi:10.1016/j.chroma.2005.11.035

    Article  CAS  Google Scholar 

  28. Wang Q, Baker GA, Baker SN, Colón LA (2006) Analyst 131:1000–1005. doi:10.1039/B607337A

    Article  CAS  Google Scholar 

  29. Tian M, Bi W, Row KH (2009) J Sep Sci 32:4033–4039. doi:10.1002/jssc.200900497

    Article  CAS  Google Scholar 

  30. Kempe M, Mosbach K (1995) J Chromatogr A 694:3–13. doi:10.1016/0021-9673(94)01070-U

    Article  CAS  Google Scholar 

  31. Yin J, Yang G, Chen Y (2005) J Chromatogr A 1090:68–75. doi:10.1016/j.chroma.2005.06.078

    Article  CAS  Google Scholar 

  32. Qiao F, Sun H, Yan H, Row KH (2006) Chromatographia 64:625–634. doi:10.1365/s10337-006-0097-2

    Article  CAS  Google Scholar 

  33. Gremlich H, Yan B (2000) Infrared and Raman Spectroscopy of Biological Materials. Marcel Dekker, New York, p 193

    Google Scholar 

  34. Kilimann K, Doster W, Vogel R, Hartmann C, Gänzle M (2006) Biochim Biophys Acta 1764:1188–1197. doi:10.1016/j.bbapap.2006.04.016

    CAS  Google Scholar 

  35. Tian M, Yan H, Row KH (2009) J Chromatogr B 877:738–742. doi:10.1016/j.jchromb.2009.02.012

    Article  CAS  Google Scholar 

  36. Lumley B, Khong TM, Perrett D (2004) Chromatographia 60:59–62. doi:10.1365/s10337-004-0329-2

    Article  CAS  Google Scholar 

  37. Christoforidis KC, Louloudi M, Rutherford AW, Deligiannakis Y (2008) J Phys Chem C 112:12841–12852. doi:10.1021/jp800430n

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (2010-0015731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Ho Row.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, M., Row, K.H. SPE of Tanshinones from Salvia miltiorrhiza Bunge by using Imprinted Functionalized Ionic Liquid-Modified Silica. Chromatographia 73, 25–31 (2011). https://doi.org/10.1007/s10337-010-1836-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-010-1836-y

Keywords

Navigation