Skip to main content
Log in

Determination of the Molar-Mass Averages of Random Poly(aspartate-co-lactide) Copolymers by Tuning the Ionic Strength of the Solvent

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Water-soluble sodium poly(aspartate-co-lactide) (PALNa) copolymers with a molar ratio of aspartate-to-lactide units equal to 1:0.6, 1:1.0 and 1:1.5 were studied using NMR spectroscopy to determine the composition as well as SEC-MALS and static light-scattering measurements to determine the molar-mass characteristics of the copolymers. In the copolymer aqueous solutions, high-molar-mass species were detected, most probably due to the incomplete dissolution of the samples. The molar-mass averages determined in water with added simple electrolyte, i.e., NaCl, were much lower than the values determined in pure water. The concentration of the salt, which allows dissolution on a molecular level, and the separation predominantly according to a size-exclusion mechanism depend on the chemical composition of the PALNa copolymers. The optimal mobile phase for the PALNa-1/0.6 and the PALNa-1/1.0 copolymers was 0.1 M NaCl at pH 9, and for the PALNa-1/1.5 copolymer with a higher content of lactide units it was 0.05 M NaCl at pH 9. The molar-mass averages of the PALNa-1/1.0 copolymer, determined by SEC-MALS and static light-scattering measurements, were comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Okada M (2002) Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  2. Miyata K, Christie RJ, Kataoka K (2011) React Funct Polym 71:227–234

    Article  CAS  Google Scholar 

  3. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  4. Shinoda H, Asou Y, Uetsugu A, Tanaka K (2003) Macromol Biosci 3:34–43

    Article  CAS  Google Scholar 

  5. Okada M (2002) Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  6. Södergard A, Stolt M (2002) Prog Polym Sci 27:1123–1163

    Article  Google Scholar 

  7. Elisseeff J, Anseth K, Langer R, Hrkach JS (1997) Macromolecules 30:2182–2184

    Article  CAS  Google Scholar 

  8. Deming TJ (2002) Adv Drug Deliv Rev 54:1145–1155

    Article  CAS  Google Scholar 

  9. Huang YS, Cui FZ (2005) Current Appl Phys 5:546–548

    Article  Google Scholar 

  10. Shinoda H, Asou Y, Kashima T, Kato T, Tseng Y, Yagi T (2003) Polym Degrad Stab 80:241–250

    Article  CAS  Google Scholar 

  11. Gonsalves KE, Jin S, Baraton M-I (1998) Biomaterials 19:1501–1505

    Article  CAS  Google Scholar 

  12. Little U, Buchanan F, Harkin-Jones E, McCaigue M, Farrar D, Dickson G (2009) Polym Degrad Stab 94:213–220

    Article  CAS  Google Scholar 

  13. Oyama HT, Tanaka Y, Kadosaka A (2009) Polym Degrad Stab 94:1419–1426

    Article  CAS  Google Scholar 

  14. Chen H, Xu W, Chen T, Yang W, Hu J, Wang C (2005) Polymer 46:1821–1827

    Article  CAS  Google Scholar 

  15. Arimura H, Ohya Y, Ouchi T (2004) Macromol Rapid Commun 25:743–747

    Article  CAS  Google Scholar 

  16. Arimura H, Ohya Y, Ouchi T (2005) Biomacromolecules 6:720–725

    Article  CAS  Google Scholar 

  17. Biela T (2006) Macromol Symp 240:47–55

    Article  CAS  Google Scholar 

  18. Gričar M, Žigon M, Žagar E (2009) Anal Bioanal Chem 393:1815–1823

    Article  Google Scholar 

  19. Gričar M, Poljanšek I, Brulc B, Šmigovec T, Žigon M, Žagar E (2008) Acta Chim Slov 55:575–581

    Google Scholar 

  20. Poljanšek I, Gričar M, Žagar E, Žigon M (2008) Macromol Symp 272:75–80

    Article  Google Scholar 

  21. Liu J, Liu L (2004) Macromolecules 37:2674–2676

    Article  CAS  Google Scholar 

  22. Strlič M, Kolar J, Biochem J (2003) J Biophys Methods 56:265–279

    Article  Google Scholar 

  23. Žagar E, Žigon M (2000) Polymer 41:3513–3521

    Article  Google Scholar 

  24. Matsubara K, Nakato T, Tomida M (1997) Macromolecules 30:2305–2312

    Article  CAS  Google Scholar 

  25. Dubin PL, Koontz S, Wright KL (1977) J Polym Sci 15:2047–2057

    CAS  Google Scholar 

  26. Žagar E (2005) Acta Chim Slov 52:245–252

    Google Scholar 

  27. Teresa M, Laguna R, Medrano R, Plana MP, Pilar Tarazona M (2001) J Chromatogr A 919:13–19

    Article  CAS  Google Scholar 

  28. Mendichi R, Giammona G, Cavallaro G (1999) Giacometti Scieroni A. Polymer 40:7109–7116

    CAS  Google Scholar 

  29. Žigon M, Žagar E (2001) Int J Polym Anal Charact 6:521–532

    Article  Google Scholar 

  30. Harwood D, Aoki H, Lee Y-D, Fellers JF, White JL (1979) J Appl Polym Sci 23:2155–2168

    Article  CAS  Google Scholar 

  31. Harwood DD, Fellers JF (1979) Macromolecules 12:693–697

    Article  CAS  Google Scholar 

  32. Liao Y-H, Kwei TK, Levon K (1995) Macromol Chem Phys 196:3107–3116

    Article  CAS  Google Scholar 

  33. Angelopoulos M, Liao Y-H, Furman B, Graham T (1996) Macromolecules 29:3046–3049

    Article  CAS  Google Scholar 

  34. Bodycomb J, Hara M (1994) Macromolecules 27:7369–7377

    Article  CAS  Google Scholar 

  35. Hara M, Wu J (1988) Macromolecules 21:402–407

    Article  CAS  Google Scholar 

  36. Lantman CW, MacKnight WJ, Peiffer DG, Sinha SK, Lundberg RD (1987) Macromolecules 20:1096–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency (program P2-0145 and Ph.D. fellowship 3311-04-831033). This work was supported by the EU project Nanobiopharmaceuticals (NMP4-CT-20006-026723). The authors also wish to thank Dr. Andrej Kržan and Ms. Maja Kerovec for contribution to the synthesis of the poly(aspartate-co-lactide) copolymers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ema Žagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gričar, M., Žigon, M., Ljubič, T.Š. et al. Determination of the Molar-Mass Averages of Random Poly(aspartate-co-lactide) Copolymers by Tuning the Ionic Strength of the Solvent. Chromatographia 75, 205–212 (2012). https://doi.org/10.1007/s10337-012-2180-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2180-1

Keywords

Navigation