Skip to main content
Log in

Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In this study, two types of pedotransfer functions (PTFs) were evaluated for their accuracy and applicability to a broad range of Alpine soils in the Halbammer area in southern Bavaria (Germany). The first model is ROSETTA, which is based on neural network analyses. It implements five hierarchical PTFs using limited to more extend input data. The second model is SOILPROP that is based on physical methods and predicts the soil hydraulic properties from particle size distribution and bulk density. The PTF were evaluated by comparing predicted with measured water retention values. The accuracy was quantified by direct statistical evaluation with the correlation coefficient (R), the mean error (ME) and the root mean square difference (RMSD). Additionally, a process based functional validation was performed by simulating the water flow using the measured and predicted soil hydraulic data. The RMSD values from ROSETTA models ranged from 0.068 to 0.202 cm3/cm3 for the water retention and from 0.450 to 0.579 log Ks (cm/day) concerning the hydraulic conductivity (K s). The ME indicated underestimated water contents at high suctions and for soils with high organic content. The functional evaluation was the better as the more input data were used in the hierarchical PTFs. The RMSD of SOILPROP was 0.073 cm3/cm3 for water contents and 0.718 log Ks (cm/day) for the hydraulic conductivity. The water contents in the middle suction range were underestimated in sandy soils and overestimated in soils with low bulk density. The functional evaluation showed improved model accuracy when the predicted saturated conductivity was adjusted to more realistic values from literature showing its sensitiveness towards water flow modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arbeitsgemeinschaft Bodenkunde (1994) Bodenkundliche Kartieranleitung, Schweizerbart′sche Verlagsbuchhandlung, Stuttgart

  • Arya LM, Paris JF (1981) A physicoempirical model to predict the soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci Soc Am J 45:1023–1030

    Google Scholar 

  • Bouma J, van Lanen JAJ (1987) Transfer functions and threshold values: from soil characteristics to land qualities. In: Beck KJ (ed) Quantified land evaluation. International Institute of Aerospace Survey Earth Science ITC publication 6, pp 106–110

  • Cornelis WM, Ronsyn J, van Meirvenne M, Hartmann R (2001) Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci Soc Am J 65:638–648

    Article  CAS  Google Scholar 

  • Dullien FAL (1979) Porous media fluid transport and pore structure. Academic Press, New York

    Google Scholar 

  • Durner W (1995). SHYPFIT 0.24 user’s manual. Research report 95.1. Department of Hydrology, University of Bayreuth, Germany

  • Gupta SC, Larson WE (1979) Estimating soil water characteristics from particle size distribution, organic matter percent and bulk density. Water Resour Res 15:1633–1635

    Article  Google Scholar 

  • Hartge K-H, Horn R (1971) Die physikalische Untersuchung von Böden. Ferdinand-Enke-Verlag, Stuttgart

    Google Scholar 

  • Haverkamp R, Parlange J-Y (1986) Predicting the water-retention curve drom particle-size distribution: 1. Sandy soils without organic matter. Soil Sci 142:325–339

    Article  Google Scholar 

  • Haykin S (1994) Neural networks, a comprehensive foundation. Macmillan, New York

    Google Scholar 

  • Hofmann M, Engelhardt S, Huwe B, Stumpp C (2009) Regionalizing soil properties in a catchment of the Bavarian Alps. Eur J For Res. doi:10.1007/s10342-008-0242-6

  • Husz G (1967) Ermittlung der pF-Kurve aus der Textur mit Hilfe multipler Regression. Zeitschr Pflanzenern Düng Bodenk 116:115–125

    Article  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. Food and Agriculture Organization of the United States (FAO), Rome

    Google Scholar 

  • Leij FJ, Alves WJ, van Genuchten MT, Williams JR (1996) Unsaturated soil hydraulic database, UNSODA 1.0 user's manual. Report EPA/600/R-96/095, US-Environmental Protection Agency, Ada, Oklahoma, 103 pp

  • Matyssek R, Wieser G, Patzner K, Blaschke H, Haeberle KH (2009) Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts? Eur J For Res. doi:10.1007/s10342-008-0243-5

  • McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil inference systems. Geoderma 109:41–73

    Article  Google Scholar 

  • Mishra S and Parker JC (1989) A user's guide to SOILPROP. Report 8801. Environmental systems and technology. Blacksburg, Virginia

  • Mishra S, Parker JC, Snighal N (1989) Estimation of soil hydraulic properties and their uncertainty from particle size distribution data. J Hydrol 108:1–18

    Article  Google Scholar 

  • Mualem Y (1979) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Nemes A, Schaap MG, Leij FJ, Wösten JHM (2001) Description of the unstaturated soil hydraulic database UNSODA Version 2.0. J Hydrol 251:151–162

    Article  Google Scholar 

  • Nicolaeva SA, Pachepsky YA, Shcherbakov RA, Shcheglov AI (1986) Modelling of moisture regime for ordinary Chernozems. Pochvovedenie 6:52–59

    Google Scholar 

  • Pachepsky YA, Rawls WJ, Lin HS (2006) Hydropedology and pedotransfer functions. Geoderma 131:308–316

    Article  Google Scholar 

  • Puckett WE, Dane JH, Hajek BF (1985) Physical and mineralogical data to determine soil hydraulic properties. Soil Sci Soc Am J 49:831–836

    Google Scholar 

  • Rawls WJ, Brakensiek DL (1985) Prediction of soil water properties for hydrologic modelling. In: Jones E, Ward TJ (eds) Watershed management in the eighties. Proceedings of the symposium ASCE, Denver, CO. 30 April–2 May 1985. ASCE, New York

  • Rawls WJ, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Trans. ASAE 108:1316–1320

    Google Scholar 

  • Renger M (1971) Die Ermittlung der Porengrößenverteilung aus der Körnung, dem Gehalt an organischer Substanz und der Lagerungsdichte. Zeitschr Pflanzenern Düng Bodenk 130:53–67

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous media. Physics 1:318–333

    Article  Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil–water characteristics from texture. Soil Sci Soc Am J 50:1031–1036

    Google Scholar 

  • Schaap MG, Leij FJ (1998) Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci 163:765–779

    Article  CAS  Google Scholar 

  • Schaap MG, Leij FJ (2000) Improved Prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model. Soil Sci Soc Am J 64:843–851

    CAS  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (1998) Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci Soc Am J 62:847–851

    CAS  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176

    Article  Google Scholar 

  • Schäfer D (1999) Bodenhydraulische Eigenschaften eines Kleineinzuggebietes- Vergleich und Bewertung unterschiedlicher Verfahren, Institut für Hydromechanik, Fakultät für Bauingenieur- und Vermessungswesen, Universität Karlsruhe

  • Simunek J, Sejna M, van Genuchten MT (1998) Code for simulating the one-dimensional movement of water, heat and multiple solutes in variably saturated media, version 2.01. US Salinity Laboratory, US Department of Agriculture, Riverside, California

  • Tietje O, Tapkenhinrichs M (1993) Evaluation of pedotransfer functions. Soil Sci Soc Am J 57:1088–1095

    Google Scholar 

  • Tyler SW, Wheatcraft SW (1989) Application of fractal mathematics to soil water retention estimation. Soil Sci Soc Am J 53:987–996

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  • Vereecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci 148:389–403

    Article  Google Scholar 

  • Vereecken H, Diels J, van Orshoven J, Feyen J, Bouma J (1992) Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci Soc Am J 56:1371–1378

    Google Scholar 

  • Wösten JHM, Bannink MH, de Gruijter JJ, Bouma J (1986) A procedure to identify different groups of hydraulic-conductivity and moisture–retention curves for soil horizons. J Hydrol 86:133–145

    Article  Google Scholar 

  • Wösten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Stumpp.

Additional information

Communicated by R. Matyssek.

The research reported in this article was conducted in the context of the DFG-funded umbrella project ‘Methodologies in Linking Hydrological and Biological Processes at the Landscape Level—a Contribution to IGBP/BAHC Research in Germany’ (DFG: Deutsche Forschungsgemeinschaft, German Research Foundation).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpp, C., Engelhardt, S., Hofmann, M. et al. Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps. Eur J Forest Res 128, 609–620 (2009). https://doi.org/10.1007/s10342-008-0241-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-008-0241-7

Keywords

Navigation