Skip to main content

Advertisement

Log in

Procedure for the selection of runout model parameters from landslide back-analyses: application to the Metropolitan Area of San Salvador, El Salvador

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The existing procedures for the selection of runout model parameters from back-analyses do not allow integrating different types of runout criteria and generally lack a systematic approach. A new method based on receiver operating characteristic (ROC) analyses and aimed at overcoming these limitations is herein proposed. The method consists of estimating discrete classifiers for every runout simulation associated with a set of model parameters. The set of parameters that yields the best prediction is selected using ROC metrics and space. The procedure is illustrated with the back-analyses of a rainfall-triggered debris flow that killed 300–500 people in the Metropolitan Area of San Salvador in 1982. The selected model parameters are used to estimate forward predictions for scenarios that correspond to different return periods. The proposed procedure may be useful in the assessment of areas potentially affected by landslides. In turn, this information can be used in the production or updating of land use plans and zonations, similar to that currently being carried out by the Office for Urban Planning of the Metropolitan Area of San Salvador in El Salvador.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Blanco FA, Burgos EA, Mejía M (2002) Estudio de amenazas por lahar en El Salvador: revisión de casos históricos y calibración de herramientas para la evaluación de amenaza. Senior thesis, Universidad Centroamericana, San Salvador, 158 pp

  • Bureau of Reclamation (1988) Downstream hazard classification guidelines. Acer Technical Memorandum No. 11, Denver, Colorado, USA

  • Bäcklin C, Finnson H (1994) Landslide hazard at the San Salvador volcano. Royal Institute of Technology, Stockholm, Sweden, p 136

    Google Scholar 

  • Cepeda J (2007) The 2005 Tate’s Cairn debris flow: back-analysis, forward predictions and a sensitivity analysis. In: Ho K, Li V (eds) 2007 International Forum on Landslide Disaster Management. Geotechnical Division, The Hong Kong Institution of Civil Engineers, Hong Kong, pp 813–833

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D, Chiesa S, Moia F (2005) Small fast-moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador). Eng Geol 79(3–4):185–214

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board, National Research Council, Washington, DC, USA, pp 36–75

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  Google Scholar 

  • Fell R et al (2008) Guidelines for landslide susceptibility, hazard and risk-zoning for land use planning. Eng Geol 102(3–4):85–98

    Article  Google Scholar 

  • FLO-2D (2004) FLO-2D users manual version 2004.10. FLO-2D Software, Inc., Nutrioso, Arizona, USA

  • Frattini P, Crosta GB, Carrara A (2008) Techniques for the evaluation and comparison landslide susceptibility models. European Geosciences Union General Assembly, Vienna

    Google Scholar 

  • Galas S, Dalbey K, Kumar D, Patra A, Sheridan M (2007) Benchmarking TITAN2D mass flow model against a sand flow experiment and the 1903 Frank slide. In: Ho K, Li V (eds) 2007 International Forum on Landslide Disaster Management. Geotechnical Division, The Hong Kong Institution of Civil Engineers, Hong Kong, pp 899–917

    Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not Roy Astron Soc 181(2):375–389

    Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Google Scholar 

  • Hungr O, McKinnon M, McDougall S (2007) Two models for analysis of landslide motion: application to the 2007 Hong Kong benchmarking exercises. In: Ho K, Li V (eds) 2007 International Forum on Landslide Disaster Management. Geotechnical Division, The Hong Kong Institution of Civil Engineers, Hong Kong, pp 919–932

    Google Scholar 

  • Hurlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102(3–4):152–163

    Article  Google Scholar 

  • Kiernan SH, Ledru O (1996) Remedial measures against landslide hazards at the San Salvador volcano, El Salvador. Royal Institute of Technology, Stockholm, Sweden 100 pp

    Google Scholar 

  • KWL Ltd (2003) Debris flow study and risk mitigation alternatives for Percy Creek and Vapour Creek (Final Report, December), District of North Vancouver, Canada

  • Lucy LB (1977) Numerical approach to testing of fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  • McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. PhD thesis, University of British Columbia, Vancouver, 268 pp

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097

    Article  Google Scholar 

  • Orense R, Vargas-Monge W, Cepeda J (2002) Geotechnical aspects of the January 13, 2001 El Salvador earthquake. Soils Found 42(4):57–68

    Google Scholar 

  • Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45(3):295–311

    Article  Google Scholar 

  • Rickenmann D (2005) Hangmuren und Gefahrenbeurteilung. Kurzbericht für das Bundesamt für Wasser und Geologie. Universität für Bodenkultur, Wien, und Eidg. Forschungsanstalt WSL, Birmensdorf

  • Rymer MJ (1987) The San Salvador earthquake of October 10, 1986—geologic aspects. Earthq Spectra 3(3):435–463

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    Article  Google Scholar 

  • Sebesta J (2007) Geomorfología del Área Metropolitana de San Salvador (AMSS) y su relación con los movimientos de ladera. Oficina de Planificación del Área Metropolitana de San Salvador (OPAMSS), San Salvador

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control. Transportation Research Board, National Research Council, Washington, DC, USA, pp 11–33

    Google Scholar 

  • Wang F, Sassa K (2007) Landslide simulation by geotechnical model adopting a model for variable apparent friction coefficient. In: Ho K, Li V (eds) 2007 International Forum on Landslide Disaster Management. Geotechnical Division, The Hong Kong Institution of Civil Engineers, Hong Kong, pp 1079–1096

    Google Scholar 

  • Zapata Martí R, Jovel R (2004) Damages and losses of the 2001 earthquakes in El Salvador. In: Rose WI, Bommer JJ, López DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador. The Geological Society of America, Boulder, CO, USA, pp 471–480

    Chapter  Google Scholar 

Download references

Acknowledgements

The contributions of the following persons and institutions are gratefully acknowledged: Prof. Oldrich Hungr (University of British Columbia) who kindly provided a beta version of DAN3D to the Norwegian Geotechnical Institute (NGI) and the International Centre for Geohazards (ICG); Faculty and Staff at the Department of Structural Mechanics at Universidad Centroamericana “José Simeón Cañas”, San Salvador for support with field work and laboratory tests; Manuel Díaz (Servicio Nacional de Estudios Territoriales, SNET) and Carlos Pullinger (LaGeo) for their support during field work and for fruitful discussions that have provided useful insight; and Giovanni Molina (Servicio Nacional de Estudios Territoriales, SNET) for providing the digital elevation maps that were used in the simulations. The comments from H. Wing Sun and an anonymous reviewer are greatly appreciated for their contribution in improving this manuscript. This study was financed by the Research Council of Norway through the International Centre for Geohazards (ICG), and the Quota Scheme of the Norwegian State Educational Loan Fund. Their support is gratefully acknowledged. This is ICG article no. 267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Cepeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cepeda, J., Chávez, J.A. & Cruz Martínez, C. Procedure for the selection of runout model parameters from landslide back-analyses: application to the Metropolitan Area of San Salvador, El Salvador. Landslides 7, 105–116 (2010). https://doi.org/10.1007/s10346-010-0197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-010-0197-9

Keywords

Navigation