Skip to main content

Advertisement

Log in

Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In many regions, the absence of a landslide inventory hampers the production of susceptibility or hazard maps. Therefore, a method combining a procedure for sampling of landslide-affected and landslide-free grid cells from a limited landslide inventory and logistic regression modelling was tested for susceptibility mapping of slide- and flow-type landslides on a European scale. Landslide inventories were available for Norway, Campania (Italy), and the Barcelonnette Basin (France), and from each inventory, a random subsample was extracted. In addition, a landslide dataset was produced from the analysis of Google Earth images in combination with the extraction of landslide locations reported in scientific publications. Attention was paid to have a representative distribution of landslides over Europe. In total, the landslide-affected sample contained 1,340 landslides. Then a procedure to select landslide-free grid cells was designed taking account of the incompleteness of the landslide inventory and the high proportion of flat areas in Europe. Using stepwise logistic regression, a model including slope gradient, standard deviation of slope gradient, lithology, soil, and land cover type was calibrated. The classified susceptibility map produced from the model was then validated by visual comparison with national landslide inventory or susceptibility maps available from literature. A quantitative validation was only possible for Norway, Spain, and two regions in Italy. The first results are promising and suggest that, with regard to preparedness for and response to landslide disasters, the method can be used for urgently required landslide susceptibility mapping in regions where currently only sparse landslide inventory data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison PD (2001) Logistic regression using the SAS system: theory and application. Wiley Interscience, New York, USA

    Google Scholar 

  • APAT (2007) Rapporto sulle frane in Italia: il progetto IFFI, metodologia, resultati e rapporti regionali. Rapporto 78/2007. Agenzia per la protezione dell’ambiente e per i servizi tecnici, Rome, Italy

  • Asch K (2005) The 1:5 Million International Geological Map of Europe and Adjacent Areas (IGME5000) map. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Bǎlteanu D, Chendeş V, Sima M, Enciu P (2010) A country level spatial assessment of landslide susceptibility in Romania. Geomorphology 124:102–112. doi:10.1016/j.geomorph.2010.03.005

    Article  Google Scholar 

  • Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329. doi:10.1007/s11069-005-5182-6

    Article  Google Scholar 

  • Bentley SP, Smalley IJ (1984) Landslips in sensitive clays. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, UK, pp 457–490

    Google Scholar 

  • Bromhead EN, Ibsen ML (2006) A review of landsliding and coastal erosion damage to historic fortifications in South East England. Landslides 3:341–347. doi:10.1007/s10346-006-0063-y

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, The Netherlands, pp 135–175

    Google Scholar 

  • Carrara A, Crosta GB, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378. doi:10.1016/j.geomorph.2006.10.033

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Ciesing (Center for International Earth Science Information Network, Columbia University), IFPRI (International Food Policy Research Institute), CIAT (Centro Internacional de Agricultura Tropical) (2004) Global rural–urban mapping project (GRUMP): Gridded population of the world, version 3, with urban reallocation (GPW-UR). Palisades, New York

    Google Scholar 

  • CRED (2011) EM-DAT: The OFDA/CRED International Disaster Database. Centre for Research on Epidemiology of Disasters — CRED, Université Catholique de Louvain, Brussels, Belgium. http://www.emdat.be. Accessed 25 Jan 2011

  • Creighton R, Irish Landslides Working Group (2006) Landslides in Ireland. Geological Survey of Ireland, Dublin, Ireland

    Google Scholar 

  • Decaulne A (2005) Slope processes and related risk appearance within the Icelandic Westfjords during the twentieth century. Nat Hazards Earth Sys Sci 5:309–318

    Article  Google Scholar 

  • Dikau R, Glade T (2003) Nationale Gefahrenhinweiskarte gravitativer Massenbewegungen. In: Liedtke H, Mäusbacher R, Schmidt KH (eds) Relief, boden und wasser. Nationalatlas Bundesrepublik Deutschland, Institut für Länderkunde, Leipzig, Germany, pp 98–99

  • Dykes AP, Kirk KJ (2001) Initiation of a multiple peat slide on Cuilcagh Mountain, Northern Ireland. Earth Surf Process Landforms 26:395–408. doi:10.1002/esp. 188

    Article  Google Scholar 

  • EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe — an overview of the last decade. EEA technical report 13/2010. European Environment Agency, Copenhagen, Denmark. doi:10.2800/62638

    Google Scholar 

  • ESA (2008) GLobCover 2004–2006. European Space Agency, Paris, France

    Google Scholar 

  • FAO, EC, ISRIC (2003) WRB Map of World Soil Resources, 1:25 000 000. FAO, Rome, Italy

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98. doi:10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Foster C, Gibson A, Wildman G (2008) The new national landslide database and landslide hazard assessment of Great Britain. Proceedings of the First World Landslide Forum, Tokyo, 18–21 November 2008, pp 203–206

  • Giardini D, Grünthal G, Shedlock K, Zhang P (2003) The GSHAP Global Seismic Hazard Map. In: Lee W, Kanamori H, Jennings P (eds) International handbook of earthquake and engineering seismology, International geophysics series 81 B. Academic, Amsterdam, USA, pp 1233–1239

    Chapter  Google Scholar 

  • GSC (2011) Landslides — recent events worldwide. Geological Survey of Canada. http://gsc.nrcan.gc.ca/landslides/in_the_news_e.php. Accessed 25 Jan 2011

  • Günther A, Reichenbach P, Hervás J (2008) Approaches for delineating areas susceptible to landslides in the framework of the European Soil Thematic Strategy. Proceedings of the First World Landslide Forum, Tokyo, 18–21 November 2008, pp 235–238

  • Guzzetti F, Tonelli G (2004) SICI: an information system on historical landslides and floods in Italy. Nat Hazards Earth Syst Sci 4:213–232

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi:10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, USA, pp 523–602

    Google Scholar 

  • Hervás J (2007) Guidelines for mapping areas at risk of landslides in Europe. Proceedings experts meeting, 23–24 October 2007, Ispra, Italy. JRC report EUR 23093 EN, Office for Official Publications of the European Communities, Luxembourg

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides — disaster risk reduction. Springer, Berlin, Germany, pp 321–349

    Chapter  Google Scholar 

  • Hervás J, Günther A, Reichenbach P, Malet JP, Van Den Eeckhaut M (2010) Harmonised approaches for landslide susceptibility mapping in Europe. In: Malet JP, Glade T, Casagli N (eds) Proc. int. conference mountain risks: bringing science to society, Florence, Italy, 24–26 November 2010. CERG Editions, Strasbourg, France, pp 501–505

  • Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York, USA

    Book  Google Scholar 

  • Hradecký J, Pánek T, Klimová R (2007) Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides 4:53–62. doi:10.1007/s10346-006-0052-1

    Article  Google Scholar 

  • ICL (2011) International Consortium of Landslides. http://www.iclhq.org/Europe.htm. Accessed 25 Jan 2011

  • Ilcewicz-Stefaniuk D, Rybicki S, Slomka T, Stefaniuk M (2008) Surface mass movements in Poland — a review. Pol Geol Inst Spec Pap 24:83–92

    Google Scholar 

  • ISDR (2009) Global assessment report on disaster risk reduction. United Nations, Geneva, Switzerland

    Google Scholar 

  • Instituto Tecnologico GeoMinero de Espana (1988) Catalogo Nacional de Riesgos Geologicos. ITGE, Madrid, Spain

  • Jaedicke C, Lied K, Kronholm K (2009) Integrated database for rapid mass movements in Norway. Nat Hazards Earth Syst Sci 9:469–479

    Article  Google Scholar 

  • Jaedicke C, Van Den Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Smith T, Tofani V, Ciurean R, Winter M. (2011) Identification of landslide hazard and risk “hotspots” in Europe. Geophys Res Abstr 13, EGU2011-10398

    Google Scholar 

  • Jelínek R, Maitan S, Omura H (2001) Slope movements in Slovakia — geographic and geological characteristics. J Fac Agric Kyushu Univ 45:589–600

    Google Scholar 

  • King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9:137–163

    Article  Google Scholar 

  • Kirschbaum DB, Adler R, Hong Y, Lerner-Lam A (2009) Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat Hazards Earth Syst Sci 9:673–686

    Article  Google Scholar 

  • Kleinbaum DG, Klein M (2002) Logistic regression, a self-learning text, 2nd edn. Springer, New York, USA

    Google Scholar 

  • Laguardia G, Niemeyer S (2008) On the comparison between the LISFLOOD modelled and the ERS/SCAT derived soil moisture estimates. Hydrol Earth Syst Sci Discuss 5:1227–1265

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855. doi:10.1007/s00254-006-0256-7

    Google Scholar 

  • Malet JP, Thiery Y, Hervás J, Günther A, Puissant A, Grandjean G (2009) Landslide susceptibility mapping at 1:1 M scale over France: exploratory results with a heuristic model. Proc. Int. conference on landslide processes: from geomorphologic mapping to dynamic modelling, A tribute to Prof. Dr. Theo van Asch, 6 –7 February 2009, Strasbourg, France, pp. 315–320

  • Markart G, Perzl F, Hohl B, Luzian R, Kleemayr K, Ess B, Mayerl J (2007) 22nd and 23rd August 2005 — analysis of flooding events and mass movements in selected communities of Vorarlberg. BFW-Dokumentation, Schriftenreihe des Bundesforschungs- and Ausbildungszentrums für Wald, Naturgefahren und Landschaft, Wien, Austria

  • Munich Re (2011) Munich Re NatCatSERVICE. http://www.munichre.com/en/reinsurance/business/non-life/georisks/natcatservice/default.aspx. Accessed 25 Jan 2011

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. doi:10.1007/s10346-006-0036-1

    Article  Google Scholar 

  • Nadim F, Asbjørn S, Pedersen S, Schmidt-Thomé P, Sigmundsson F, Engdahl M (2008) Natural hazards in Nordic countries. Episodes 31:176–184

    Google Scholar 

  • Nordregio (2004) Mountain areas in Europe: analysis of mountain areas in EU member states, acceding and other European countries, report 2004:1. Nordic Centre for Spatial Development, Stockholm, Sweden

  • Petley DN (2011) The landslide blog. http://blogs.agu.org/landslideblog/. Accessed 12 Oct 2011

  • Rossi M, Guzzetti F, Reichenbach P, Mondini A, Peruccacci S (2009) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142. doi:10.1016/j.geomorph.2009.06.020

    Article  Google Scholar 

  • Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Deutscher Wetterdienst, Offenbach a. M., Germany

  • Salvati P, Bianchi C, Rossi M, Guzzetti F (2010) Societal landslide and flood risk in Italy. Nat Hazards Earth Syst Sci 10:465–483

    Article  Google Scholar 

  • Song RH, Daimaru H, Abe K, Kurosawa U, Matsuura S (2008) Modelling the potential distribution of shallow-seated landslides using the weights of evidence and the logistic regression model: a case study in the Sabae area, Japan. Int J Sediment Res 23:106–118

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Theilen-Willige B (2010) Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods. Nat Hazards Earth Syst Sci 10:1183–1196

    Article  Google Scholar 

  • USGS (2011) Landslide events. US Geological Survey. http://landslides.usgs.gov/recent/. Accessed 25 Jan 2011

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes, Belgium. Geomorphology 76:392–410. doi:10.1016/j.geomorph.2005.12.003

    Article  Google Scholar 

  • Van Den Eeckhaut M, Reichenbach P, Guzzetti F, Rossi M, Poesen J (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Nat Hazards Earth Syst Sci 9:507–521

    Article  Google Scholar 

  • Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 115:141–155. doi:10.1016/j.geomorph.2009.09.042

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Gullentops F, Vandekerckhove L, Hervás J (2011) Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quat Res 130:185–196

    Google Scholar 

  • Van Den Eeckhaut M, Hervás J (in press) State of the art of national landslide databases in Europe and their potential for hazard and risk assessment. Geomorphology

  • van Westen CJ, Castellanos E, Kuriakose SL (2009) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131. doi.10.1016/j.enggeo.2008.03.010

    Google Scholar 

  • Vogt JV, Soille P, de Jager AL, Rimaviciute E, Mehl W, Foisneau S, Bódis K, Dusart J, Paracchini ML, Haastrup P, Bamps C (2007) A pan-European river and catchment database. JRC report EUR 22920 EN, Office for Official Publications of the European Communities, Luxembourg

  • Warburton J, Holden J, Mills AJ (2004) Hydrological controls of surficial mass movements in peat. Earth Sci Rev 67:139–156. doi:10.1016/j.earscirev.2004.03.003

    Article  Google Scholar 

  • Zêzere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 2:73–82

    Article  Google Scholar 

Download references

Acknowledgements

This study has been carried out in the framework of the EU-FP7 project SafeLand: Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies (Grant Agreement 226479; http://www.safeland-fp7.eu/). The authors thank all the project partners that have contributed to the collection of the thematic data. Special thanks go to Kari Sletten (Norwegian Geological Survey) and prof. Luciano Picarelli and Tonino Santo (AMRA S.c.a.r.l., Naples, Italy) for providing landslide inventory data for Norway and the Campania region respectively. The reviewer and editor are thanked for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Van Den Eeckhaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Den Eeckhaut, M., Hervás, J., Jaedicke, C. et al. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9, 357–369 (2012). https://doi.org/10.1007/s10346-011-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-011-0299-z

Keywords

Navigation