Skip to main content

Advertisement

Log in

GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The major scope of the study is the assessment of landslide susceptibility of Flysch areas including the Penninic Klippen in the Vienna Forest (Lower Austria) by means of Geographical Information System (GIS)-based modelling. A statistical/probabilistic method, referred to as Weights-of-Evidence (WofE), is applied in a GIS environment in order to derive quantitative spatial information on the predisposition to landslides. While previous research in this area concentrated on local geomorphological, pedological and slope stability analyses, the present study is carried out at a regional level. The results of the modelling emphasise the relevance of clay shale zones within the Flysch formations for the occurrence of landslides. Moreover, the distribution of mass movements is closely connected to the fault system and nappe boundaries. An increased frequency of landslides is observed in the proximity to drainage lines, which can change to torrential conditions after heavy rainfall. Furthermore, landslide susceptibility is enhanced on N-W facing slopes, which are exposed to the prevailing direction of wind and rainfall. Both of the latter geofactors indirectly show the major importance of the hydrological conditions, in particular, of precipitation and surface runoff, for the occurrence of mass movements in the study area. Model performance was checked with an independent validation set of landslides, which are not used in the model. An area of 15% of the susceptibility map, classified as highly susceptible, “predicted” 40% of the landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agterberg FP, Cheng Q (2002) Conditional independence test for weights-of-evidence modeling. Nat Resour Res 11:249–255

    Article  Google Scholar 

  • Agterberg FP, Bonham-Carter GF, Wright DF (1990) Statistical pattern integration for mineral exploration. In: Gaal G, Merriam DF (eds) Computer application in resource estimation: prediction and assessment for metals and petroleum. Pergamon, Oxford, pp 1–21

    Google Scholar 

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landslides in the central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Aspinall R (1992) An inductive modelling procedure based on Bayes' theorem for analysis of pattern in spatial data. Int J Geogr Inform Syst 6:105–121

    Article  Google Scholar 

  • Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estudios Geológicos 65:49–65

    Article  Google Scholar 

  • Blaszczynski JS (1997) Landform characterization with geographic information systems. Photogramm Eng Remote Sens 63:183–191

    Google Scholar 

  • Bonham-Carter GF (2002) Geographic information systems for geoscientist: modelling with GIS. Pergamon, New York, pp 302–334

    Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. Stat Appl in Earth Sci 89–9:171–183

    Google Scholar 

  • Brabb E (1984) Innovative approaches to landslide hazard and risk mapping. Proc Fourth Int Symp Landslides 1:307–323

    Google Scholar 

  • Cardinali M, Galli M, Guzzetti F, Reichenbach P, Borri C (1994) Relationships between mass-movements and tectonic setting in the Carpina Basin, northern Umbria. Geografia Fisica e Dinamica Quaternarica 17:3–17

    Google Scholar 

  • Chung CJF, Fabbri A (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazard 30:451–472

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Z Geomorphol NF 42:213–228

    Article  Google Scholar 

  • Damm B, Becht M, Varga K, Heckmann T (2010) Relevance of tectonic and structural parameters in Triassic bedrock formations to landslide susceptibility in Quaternary hillslope sediments. Quat Int 222:143–153

    Article  Google Scholar 

  • Damm B, Terhorst B (2010) A model of slope formation related to landslide activity in the Eastern Prealps, Austria. Geomorphology 122:338–350

    Article  Google Scholar 

  • Damm B, Terhorst B, Köttritsch E, Ottner F, Mayrhofer M (2008) Zum Einfluss bodenphysikalischer und bodenmechanischer Parameter in quartären Deckschichten auf Massenbewegungen im Wienerwald. Abhandlungen der Geologischen Bundesanstalt 62:33–37

    Google Scholar 

  • Dietrich EW, Reiss R, Hsu ML, Montgomery DR (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Process 9:383–400

    Article  Google Scholar 

  • Fels JE, Zobel R (1995) Landscape position and classified landtype mapping for statewide DRASTIC mapping project. North Carolina State University Technical Report VEL.95.1. North Carolina Department of Environment, Health and Natural Resources, Division of Environmental Management, Raleigh, North Carolina

  • Fels JE (1994) Modeling and mapping potential vegetation using digital terrain data: applications in the ellicott rock wilderness of North Carolina, South Carolina, and Georgia. North Carolina State University, Dissertation

    Google Scholar 

  • Fink MH, Moog O, Wimmer R (2000) Fließgewässer-Naturräume Österreichs—eine Grundlage zur typologischen Charakteristik österreichischer Fließgewässer. Monographien des Umweltbundesamtes 128

  • Götzinger G (1943) Neue Beobachtungen über Bodenbewegungen in der Flysch Zone. Mitteilungen der Österreichischen Geographischen Gesellschaft 86:87–104

    Google Scholar 

  • Götzinger G, Grill R, Küpper H, Vetters H (1952) Geologische Karte der Umgebung von Wien 1:75,000. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) slope stability. Wiley, New York, pp 187–230

    Google Scholar 

  • Jenness J (2006) Topographic position index (tpi_jen.avx) extension for ArcView 3.x, v. 1.3a. Jenness Enterprises Web. http://www.jennessent.com/arcview/tpi.htm. Accessed 4 June 2010

  • Margielewski W (2006) Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology 77:7–68

    Article  Google Scholar 

  • Mayrhofer M, Ottner F, Terhorst B, Köttritsch E, Damm B (2008) Clay minerals and slope stability of Quaternary sediments in landslide areas of the Wienerwald Flysch Zone (Vienna Forest/Lower Austria). 4th Mid-European Clay Conf, Mineralogia, Zakopane, pp 111–117

  • Neubauer, Höck V (2000) Aspects of geology in Austria and adjoining areas: introduction. Mitteil Österr Geol Ges 92:7–14

    Google Scholar 

  • Neuhäuser B, Terhorst B (2006) Landslide susceptibility assessment using weights-of-evidence applied on a study site at the Jurassic escarpment of the Swabian Alb (SW-Germany). Geomorphology 86:12–24

    Article  Google Scholar 

  • Oberhauser R (1980) Der Geologische Aufbau Österreichs. Springer, Wien

    Google Scholar 

  • Ottner F, Keusch D, Schweigl J (2006) The fate of clay in landslides. Berichte der Deutschen Ton- und Tonmineralgruppe 12:21–25

    Google Scholar 

  • Pánek T, Hradecky J, Minár J, Silhán K (2010) Recurrent landslides predisposed by fault-induced weathering of flysch in the Western Carpathians. Eng Geology Special Publications 23:183–199

    Article  Google Scholar 

  • Plöchinger B, Prey S (1993) Der Wienerwald. In: Schnabel W (ed) Sammlung Geologischer Fuhrer 59. Gebrüder Borntraeger, Berlin, Stuttgart

    Google Scholar 

  • Poisel R, Eppensteiner W (1986) Control of a large natural slope in a suburb of Vienna. In: Proc. Conf Rock Eng and Excav Urban Environ. Hong Kong (Institution of Mining and Metallurgy, London). American Publications Center, Brookfield, pp 335–340

  • Ruff M (2005) GIS-gestütze Risikoanalyse für Rutschungen und Felsstürze in den Ostalpen (Vorarlberg, Österreich). Universitätsverlag, Karlsruhe

    Google Scholar 

  • Sawatzky DL, Raines GL, Bonham-Carter GF, Looney CG (2009) Arc-SDM: Spatial data modeller (SDM): ArcMap 9.3 geoprocessing tools for spatial modelling using weights of evidence, logistic regression, fuzzy lofic and neural networks. http://www.ige.unicamp.br/sdm/. Accessed 1 June 2010

  • Schmanke V (1999) Untersuchungen zur Hanggefährdung im Bonner Raum. Eine Bewertung mit Hilfe unterschiedlicher Modellansätze. Mainzer Geograph Studien 44: (146 p.)

  • Schnabel W (1992) New data on the Flysch Zone of the Eastern Alps in the Austrian sector and new aspects concerning the transition to the Flysch Zone of the Carpathians. Cretac Res 13:405–419

    Article  Google Scholar 

  • Schnabel W et al (eds) (2002) Niederösterreich, Geologische Karte 1:200,000 mit Kurzerläuterung. Geologische Bundesanstalt, Wien

    Google Scholar 

  • Schweigl J, Hervas J (2009) Landslide Mapping in Austria. JRC Scientific and Technical Reports

  • Schwenk H, Spendlingwimmer R, Salzer F (1992) Massenbewegungen in Niederösterreich. Jahrbuch Geologische Bundesanstalt 135/2

  • Soeters R, Van Westen CJ (1996) Slope stability recognition, analysis, and zonation: application of geographical information system to landslide hazard zonation. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, National Research Council, Special Report 247. National Academy Press, Washington D.C

    Google Scholar 

  • Swanson FJ, Kratz TK, Caine N, Woodmansee RG (1988) Landform effects on ecosystem patterns and processes. BioScience 38:92–98

    Article  Google Scholar 

  • Terhorst B (2001) Mass movements of various ages on the Swabian Jurassic escarpment: geomorphologic processes and their causes. Z Geomorph Suppl 125:65–87

    Google Scholar 

  • Terhorst B, Kreja R (2009) Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides 6:309–319

    Article  Google Scholar 

  • Terhorst B, Damm B, Peticzka R, Köttritsch E (2009) Reconstruction of Quaternary landscape formation as a tool to understand present geomorphological processes in the Eastern Prealps (Austria). Quat Int 209:66–78

    Article  Google Scholar 

  • Terhorst B, Damm B (2009) Slope stability in the Flysch zone of the Vienna Forest (Austria). J Geol Res 2009

  • Thein S (2000) Massenverlagerungen an der Schwäbischen Alb; Statistische Vorhersagemodelle und regionale Gefährdungskarten unter Anwendung einen Geographischen Informationssystemes. In: Bibus E, Terhorst, B (eds) Tübinger Geowissenschafliche Arbeiten, Reihe D: Geoökologie und Quartärforschung, Tübingen, pp 1–38

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazard 30:399–419

    Article  Google Scholar 

  • Varga K, Becht M, Damm B (2006) Ansätze der GIS-gestützen räumlichen Modellierung von Rutschgefahren in Buntsandsteingebieten Nordhessens und Südniedersachsens (BRD). Angewandte Geoinformatik 2006:679–684

    Google Scholar 

  • Weiss A (2001) Topographic position and landforms analysis. Poster presentation, ESRI User Conference, San Diego, CA

    Google Scholar 

  • Wessely G (2006) Niederösterreich. Geologie der Österreichischen Bundesländer. Geologische Bundesanstalt, Wien

    Google Scholar 

  • ZAMG (2002) Klimadaten von Österreich 1971–2000. CD Rom, Wien

    Google Scholar 

Download references

Acknowledgements

The project is supported by the Austrian Academy of Science (ÖAW) in the frame of the DOC-fFORTE fellowship. Data have been gratefully received by the Austrian Geological Survey, the Geological Survey of the Construction Group of the Provincial Government of Lower Austria (Geologische Dienst der Gruppe Baudirektion der Niederösterreichischen Landesregierung), and the Department of Torrent and Avalanche Controlling (Wildbach und Lawinenverbauung) of the Federal Ministry of Agriculture, Forestry, Environment and Water Management in Austria. In these authorities, we would like to express our gratitude to Mag. Thomas Hofmann, Dr. Joachim Schweigl, and Dipl. Ing Christian Amberger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Neuhäuser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhäuser, B., Damm, B. & Terhorst, B. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model. Landslides 9, 511–528 (2012). https://doi.org/10.1007/s10346-011-0305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-011-0305-5

Keywords

Navigation