Skip to main content

Advertisement

Log in

Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

An Erratum to this article was published on 03 October 2014

Abstract

Development of landslide inventories based on remote sensing techniques has become one of the main tools in assessment of hazards and risk. Among those techniques, visual and automatic and semi-automatic analysis of high- and very high-resolution (VHR) satellite images, or a combination of these, has recently been considered as a promising way to identify and map landslides at local and regional scales. In this context, a landslide inventory for the municipality of Pahuatlán, Puebla, in central Mexico was prepared by combining three techniques: (1) visual analysis of stereoscopic pairs of VHR satellite images (GeoEye-1), (2) visual analysis of monoscopic VHR satellite images (SPOT 5 and Google Earth images), and (3) field surveying. In this paper, particular attention is given to landslide identification and mapping based on the GeoEye-1 stereo-pairs. Additionally, as a preliminary step in the use of VHR imagery, a general review is presented of the available VHR satellite images, software and hardware that can be useful for digital mapping of landslides. The landslide inventory included a total of 577 landslides, corresponding to an average density of 10.5 landslides per km2. Of these, 385 were classified as recent, 171 as old, and 21 as very old, regardless of state of activity. The total mapped area was 54.9 km2; 57.7 % of it had been affected by landsliding. The mean area occupied by recent landslides was of the order of 1,066 m2; for old landslides, it was 82,559 m2 and for very old landslides 1,173,952 m2. Debris flows were the most frequent type of movement (217), followed by 167 translational slides, 97 complex movements, 79 rotational slides, and 17 falls and topples. The cost–benefit relationships of a number of these techniques remain debatable because of the high cost of some of the VHR images and the related software and hardware. However, the appearance of new satellite sensors is likely to generate market competence, so this type of image will probably be available at a much lower cost in the near future. Additionally, it is important to consider that the use of several stereo-high-resolution images involves no cost, as downloading high-resolution images from Google Earth, using Google Earth Pro is currently available. The relative rapidity of these techniques can be highly valuable after a regional landslide disaster has occurred, since damage to roads and infrastructure usually prevents the rapid and accurate evaluation of the impact of landsliding. Most importantly, these techniques can be of great value for hazard evaluation of potentially unstable inhabited slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdallah C, Baghdadi N, Boukheir R (2010) Exploratory GIS & remote sensing analysis for the development of statistical correlations between environmental parameters and mass movements’ occurrence. Geophysical Research Abstracts Vol. 12, EGU2010. http://meetingorganizer.copernicus.org/EGU2010/EGU2010-8778.pdf. Accessed 18 Jan 2014

  • Akgün A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51:1377–1387. doi:10.1007/s00254-006-0435-6

    Article  Google Scholar 

  • Alkevli T, Ercanoglu M (2011) Assessment of ASTER satellite images in landslide inventory mapping: Yenice-Gökçedbey (Western Black Sea Region, Turkey). Bull Eng Geol Environ 70:607–617. doi:10.1007/s10064-011-0353-z

    Article  Google Scholar 

  • Allum JAE (1966) Photogeology and regional mapping. Pergamon Press, Oxford

    Google Scholar 

  • Al-Athari FM (2011) Parameter estimation for the double Pareto distribution. J Math Stat 7:289–294

    Article  Google Scholar 

  • Antonini G, Cardinali M, Guzzetti F, Reichenbach P, Sorrentino A (1993) Carta Inventario dei Fenomeni Franosi della Regione Marche ed aree limitrofe. CNR Gruppo per la Difesa dalle Catastrofi Idrogeologiche Publication 580, 2 sheets, scale 1:100,000 (in Italian)

  • Ardizzone F, Cardinalli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall induced landslides using elevation data collected by airborne LIDAR. Nat Hazards Earth Syst Sci 7:637–650

    Article  Google Scholar 

  • Ardizzone F, Fiorucci F, Santangelo M, Cardinali M, Mondini A, Rossi M, Reichenbach P, Guzzetti F (2013) Very-high resolution stereoscopic satellite images for landslide mapping. Proc Second World Landslide Forum 3–7

  • Baldo M, Bicocchi C, Chiocchini U, Giordan D, Lollino G (2009) LiDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italia. Geomorphology 105:193–201

    Article  Google Scholar 

  • Beiser L (1981) Anaglyph stereoscopy. Google patents. http://www.google.com.mx/patents/US4290675. Accessed 19 Jan 2014

  • Bektas K, Coltekin A (2009) A survey of stereoscopic visualization support in mainstream geographic information systems. In: Proceedings, True 3D in cartography, 1st international conference on 3D maps, 24–28 August 2009, Dresden, Germany, pp 24–28

  • Bektas K, Coltekin A (2012) Area of interest based interaction and Geovisualization with WebGL. In: Proceedings of the graphical web conference 2012, Zurich, Switzerland

  • Bernard M, Decluseau D, Gabet L, Nonin P (2012) 3D capabilities of Pleiades satellite. International archives of the photogrammetry. Remote Sens Spat Inf Sci 39:553–557

    Google Scholar 

  • Bertolini G, Canuti P, Casagli N, de Nardo MT, Egidi D, Mainetti M, Pignoner, Pizziolo M (2002) Carta della Pericolosità Relativa da Frana della Regione Emilia-Romagna. SystemCart, Rome, Italy (also in English). http://ambiente.regione.emilia-romagna.it/geologia-en/divulgazione/pubblicazioni/cartografia-geo-tematica/carta-della-pericolosita-relativa-da-frana-ai-fini-di-protezione-civile. Accessed 19 Jan 2014

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109:132–147

    Article  Google Scholar 

  • Borghuis AM, Lee HY (2007) Comparison between automated and manual mapping of typhoon‐triggered landslides from SPOT‐5 imagery. Int J Remote Sens 28:1843–1856. doi:10.1080/01431160600935638

    Article  Google Scholar 

  • Boulos M, Robinson L (2009) Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes. Int J Health Geogr 8:59. doi:10.1186/1476-072X-8-59

    Article  Google Scholar 

  • Blake B, Fox R (1973) The psychophysical inquiry into binocular summation. Percept Psychophys 14:161–185. doi:10.3758/BF03198631

    Article  Google Scholar 

  • Brardinoni F, Slaymaker O, Hassan MA (2003) Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology 54:179–196

    Article  Google Scholar 

  • Brown K (2012) Landslide detection and susceptibility mapping using LiDAR and artificial neural network modeling: a case study in glacially dominated Cuyahoga River valley, Ohio. Thesis Master Science, Bowling Green State University

  • Cardinali M, Guzzetti F, Brabb EE (1990) Preliminary map showing landslide deposits and related features in New Mexico. U.S. Geological Survey Open File Report 90/293, 4 sheets, scale 1:500 000

  • Carrara A, Merenda L (1976) Landslide inventory in northern Calabria, southern Italy. Geol Soc Am Bull 87:1153–1162

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Process Landf 28:1125–1142

    Article  Google Scholar 

  • Chen H-C, Chen WW (2012) High resolution 3D images of natural terrains and landslides. In: Proceedings of the 2012 International Symposium on Computer, Consumer and Control. IEEE Computer Society, Washington, pp 598–601. doi:10.1109/IS3C.2012.156

  • Chen RF, Chang KJ, Angelier J, Chan YC, Deffontaines B, Lee CT, Lin ML (2006) Topographical changes revealed by high-resolution airborne LIDAR data: the 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Eng Geol 88:160–172

    Article  Google Scholar 

  • Corsini A, Cervi F, Daehne A, Ronchetti F (2009) Coupling geomorphic field observation and LiDAR derivatives to map complex landslide. In: Malet JP, Remaître A, Bogaard T (eds) Landslides processes—from geomorphologic mapping to dynamic modelling: proceedings of the landslide processes conference. Strasbourg, pp 15–18

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation, Transportation Research Board special report, vol 247., pp 36–75

    Google Scholar 

  • Derron MH, Jaboyedoff M (2010) Preface to the special issue: LiDAR and DEM techniques for landslides monitoring and characterization. Nat Hazards Earth Syst Sci 10:1877–1879

    Article  Google Scholar 

  • Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslides mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129:59–70. doi:10.1016/j.geomorph.2011.01.013

    Article  Google Scholar 

  • Gagnon H (1975) Remote sensing of landslides hazards on quick clays of eastern Canada. In: Proceeding 10th International Symposium Remote Sensing of Environment. Environmental Research Institute of Michigan, Ann Arbor, pp 803–810

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289. doi:10.1016/j.geomorph.2006.09.023

    Article  Google Scholar 

  • Gao J, Maroa J (2010) Topographic controls evolution of shallow landslides in pastoral Wairarapa, New Zealand, 1979–2003. Geomorphology 114:373–381. doi:10.1016/j.geomorph.2009.08.002

    Article  Google Scholar 

  • Glade T (2001) Landslide hazard assessment and historical landslide data—an inseparable couple? Adv Nat Technol Hazards Res 17:153–168. doi:10.1007/978-94-017-3490-5_12

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manag 18:623–633

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, central Italy. Environ Manag 25(3):247–363

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Ardizzone F, Galli G (2003) The impact of landslides in the Umbria region, central Italy. Nat Hazards Earth Syst Sci 3:469–486

    Article  Google Scholar 

  • Guzzetti F, Modini A, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Haneberg WC, Cole WF, Kasali G (2009) High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus; San Francisco, USA. Bull Eng Geol Environ 68:263–276. doi:10.1007/s10064-009-0204-3

    Article  Google Scholar 

  • Harp EL, Jibson RL (1996) Landslides triggered by the 1994 Northridge, California earthquake. Seismol Soc Am Bull 86:319–S332

    Google Scholar 

  • Howard I, Rogers B (2012) Perceiving in depth. Stereoscopic vision. Volume II. Oxford University Press, New York

    Book  Google Scholar 

  • Liu JK, Hsiao KH, Shih PTY (2012) A geomorphological model for landslide detection using airborne LIDAR data. J Mar Sci Technol 20:629–638. doi:10.6119/JMST-012-0412-1

    Google Scholar 

  • Kasai M, Ikeda M, Asahina T, Fujisawa K (2009) LíDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113:57–69. doi:10.1016/j.geomorph.2009.06.004

    Article  Google Scholar 

  • Kliparchuk K, Collins D (2010) Evaluation of stereoscopic GeoEye-1 satellite imagery to assess landscape and stand level characteristics. In: Proceedings of the ISPRS Canadian Geomatics Conference and Symposium of Commission I, Calgary, AB, Canada, pp 15–18

  • Krishnaswamy M, Kalyanaraman S (2005) Indian remote sensing satellite Cartosat-1: technical features and data products. http://www.gisdevelopment.net/technology/rs/techrs023.htm. Accessed 19 Jan 2014

  • Lee S, Lee M (2006) Detecting landslide location using KOMPSAT 1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea. Adv Space Res 38:2261–2271. doi:10.1016/j.asr.2006.03.036

    Article  Google Scholar 

  • Lan H, Martin CD, Zhou C, Lim CH (2010) Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology 118:213–223. doi:10.1016/j.geomorph.2010.01.002

    Article  Google Scholar 

  • LoaezaGarcía JP, ZárateBarradas RG (2005) Carta Geológico-Minera Huauchinango F14-D83. Servicio Geológico Mexicano, scale 1:50 000. (In Spanish)

  • Mann U, Pradhan B, Prechtel N, Buchroithner M (2012) An automated approach for detection of shallow landslides from LiDAR derived DEM using geomorphological indicators in a tropical forest. In: Terrigenous mass movements. Springer, Berlin, pp 1–22

  • Marcelino EV, Formaggio AR, Maeda EE (2009) Landslide inventory using image fusion techniques in Brazil. Int J Applied Earth Obs Geoinformation 11:181–191. doi:10.1016/j.jag.2009.01.003

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen C, Vinod Kumar K (2010) Characterizing spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • Miner AS, Flentje P, Mazengarb C, Windle DJ (2010) Landslide recognition using LiDAR derived digital elevation models, lessons learnt from selected Australian examples. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically active: proceedings of the 11th IAEG congress of the International Association of Engineering Geology and the Environment. Auckland, New Zealand, pp 1–9

  • Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinalli M, Ardizzone F (2011) Semi-automatic recognition and mapping of rainfall induced shallow landslides using satellite optical images. Remote Sens Environ 115:1743–1757

    Article  Google Scholar 

  • Nale DK (2002) Quickbird—aerial photography comparison report. EMAP International, Reddick

  • Navarrete Pacheco JA (2003) Digital stereo image interpretation of natural hazard assessment. Dissertation, ITC

  • Nichol J, Wong MS (2005) Satellite remote sensing for detailed landslide inventories using change detection and image fusion. Int J Remote Sens 26:1913–1926. doi:10.1080/01431160512331314047

    Article  Google Scholar 

  • Nichol EJ, Shaker A, Wong MS (2006) Application of high-resolution stereo satellite images to detailed landslides hazard assessment. Geomorphology 76:68–75. doi:10.1109/URS.2009.5137737

    Article  Google Scholar 

  • Nikolakopoulos KG, Lathourakis G (2005) Along the track vs across the track satellite stereo-pair for DTM creation. In: Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. Proceedings. 2005 IEEE International 8:5324–5327, 25–29

  • Oliva Aguilar VR, Garza Merodio GG, Alcántara Ayala I (2011) Configuration and temporal dimension of vulnerability: spaces and disasters in the Sierra Norte de Puebla. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM 75:61–74

    Google Scholar 

  • Olm J, Gaffney B (2010) 3D stereo digital intermediate workflow. In: Okun J, Zwerman S (eds) The VES handbook of visual effects: industry standard VFX practices and procedures. Focal Press, Oxford, pp 434–447

    Google Scholar 

  • Ostnes R, Abbott V, Lavender S (2004) Visualization techniques: an overview—part 2. Hydrogr J 114:3–9

    Google Scholar 

  • Peters-Guarin G, McCall MK, van Westen CJ (2012) Coping strategies and risk manageability: using participatory geographical information systems to represent local knowledge. Disasters: J disaster Stud Policy Manag 36:1–27

    Article  Google Scholar 

  • Petrie G (2001) 3D stereo-viewing of digital imagery: is auto-stereoscopy the future for 3D. GeoInformatics 4:24–29

    Google Scholar 

  • Ping L, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. Geosci Remote Sens Lett IEEE 8:701–705. doi:10.1109/LGRS.2010.2101045

    Article  Google Scholar 

  • Planar (2008) SD2620W stereoscopic monitor user’s guide. Planar Systems, Beaverton

  • Poli D, Remondino F, Angiuli E, Agugiaro G (2013) Evaluation of Pleiades-1a triplet on Trento testfield. International Archives of the Photogrammetry, Remote Sens Spat Inf Sci 40:287–292

    Article  Google Scholar 

  • Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9:1921–1928

    Article  Google Scholar 

  • Quantin C, Allemand P, Delacourt C (2004) Morphology and geometry of Valles Marineris landslides. Planetary Space Sci 52:1011–1022. doi:10.1016/j.pss.2004.07.016

    Article  Google Scholar 

  • Ray RG (1960) Aerial photographs in geological interpretation and mapping. Geological survey professional paper, Washington, USA. http://pubs.usgs.gov/pp/0373/report.pdf. Accessed 18 Jan 2014

  • Razak KA, Straatsma MW, van Westen CJ, Malet JP, de Jong SM (2011) Airborne laser scanning of forested landslides characterization: terrain model quality and visualization. Geomorphology 126:186–200

    Article  Google Scholar 

  • Remondo J, Bonachea J, Cendrero A (2005) A statistical approach to landslide risk modeling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides 2:321–328. doi:10.1007/s10346-005-0016-x

    Article  Google Scholar 

  • Rib HT, Liang T (1978) Recognition and identification. In: Schuster RL, Krizek RJ (eds) Landslide analysis and control, National Academy of Sciences, Transportation Research Board special report 176, pp 34–80

  • Rossi M, Ardizzone F, Cardinalli M, Fiorucci F, Marchesini I, Mondini A, Santangelo M, Gosh S, Riguer DEL, Lahousse T, Chang KT, Guzzetti F (2012) A tool for the estimation of the distribution of landslide area in R. Geophysical Research Abstracts, 14, EGU2012-9438-1

  • Sánchez Rojas LE, De la Callejera Moctezuma AE (2004) Carta Geológico-Minera Pahuatlán F14-D73. ServicioGeológicoMexicano, scale 1:50 000. (On Spanish)

  • Sauchyn DJ, Trench NR (1978) Landsat applied to landslide mapping. Photogramm Eng Remote Sens 44:735–741

    Google Scholar 

  • Scanvic JY, Girault F (1989) Imagerie SPOT-1 etinventaire des mouvements de terrain: l’exemple de La Paz (Bolivie). Photo Interpretation 89:1–20 (In French)

    Google Scholar 

  • Schulz WH (2004) Landslides mapped using LIDAR imagery, Seattle, Washington, US. Geological Survey open-file report 2004-1396. http://pubs.usgs.gov/of/2004/1396/OF2004-1396_508.pdf. Accessed 18 Jan 2014

  • Schulz WH (2007) Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Eng Geol 89:67–87. doi:10.1016/j.enggeo.2006.09.019

    Article  Google Scholar 

  • Steiniger S, Weibel R (2010) GIS software. In: Warf B (ed) Encyclopedia of geography. SAGE, Thousand Oaks, pp 1319–1322. doi:10.4135/9781412939591.n518

  • Stephens PR (1988) Use of satellite data to map landslides. In: Proceedings 9th Asian Conference on Remote Sensing, Bangkok, Thailand, 11, pp 1–7

  • Tempfli K, Huurneman GC, Bakker WH, Janssen LLF, Bakker WH, Feringa WF, Gieske ASM, Grabmaier KA, Hecker CA, Horn JA, Huurneman GC, Kerle N, van der Meer FD, Parodi GN, Pohl C, Reeves CV, van Ruitenbeek FJA, Schetselaar EM, Weir MJC, Westinga E, Woldai T (2009) Principles of remote sensing: an introductory textbook. ITC, the Netherlands

    Google Scholar 

  • van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, van Beek LPH, Vandekerckhove L (2007) Use of LiDAR-derived images for mapping old landslides under forest. Earth Surf Process Landf 32:754–769. doi:10.1002/esp.1417

    Article  Google Scholar 

  • Weirich F, Blesius L (2007) Comparison of satellite and air photo based landslide susceptibility maps. Geomorphology 87:352–364. doi:10.1016/j.geomorph.2006.10.003

    Article  Google Scholar 

  • van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environment 65:167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Van Zuidam RA (1985) Aerial photo-interpretation in terrain analysis and geomorphological mapping. International Institute for Aerospace Survey and Earth Sciences (ITC). Smiths, the Hague

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21:337–342

    Google Scholar 

  • Yang X, Chen L (2010) Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. Int J Appl Earth Obs Geoinformation, Geospatial Technologies Disaster Manag 12:487–495. doi:10.1016/j.jag.2010.05.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to CONACYT for financial support for the Project 156242: MISTLI and for providing a post-graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franny Giselle Murillo-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murillo-García, F.G., Alcántara-Ayala, I., Ardizzone, F. et al. Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides 12, 277–291 (2015). https://doi.org/10.1007/s10346-014-0473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0473-1

Keywords

Navigation