Skip to main content
Log in

Prediction of changes in landslide rates induced by rainfall

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This work focuses on the development of a combined statistical-mechanical approach to predict changes in landslide displacement rates from observed changes in rainfall amounts. The forecasting tool FLAME (Forecasting Landslides Accelerations induced by Meteorological Events) associates (1) a statistical impulse response (IR) model to simulate the changes in landslide rates by computing a transfer function between the input signal (e.g. rainfall) and the output signal (e.g. displacement) and (2) a simple 1D mechanical (MA) model (e.g. viscoplastic rheology) to take into account changes in pore water pressure. The models have been applied to forecast the displacement rates at the Super-Sauze landslide (South East France). The performance of different combinations of models (IR model alone, MA model alone and a combination of the IR and MA models) is evaluated against observed changes in pore water pressures and displacement rates at the study site. Results indicate that the three models are able to reproduce the displacement pattern in the general kinematic regime (succession of acceleration and deceleration phases); conversely, extreme kinematic regimes such as fluidization of part of the landslide mass are not being reproduced. The approach constitutes however a robust tool to predict changes in displacement rates from rainfall or groundwater time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Angeli MG, Buma J, Gasparetto P, Pasuto A (1998) A combined hydrology/stability model for low-gradient clay slopes in the Italian Dolomites. Eng Geol 49:1–13

    Article  Google Scholar 

  • Belle P, Aunay B, Bernardie S, Grandjean G, Ladouche B, Mazué R, Join JL (2013) The application of an innovative inverse model for understanding and predicting landslide movements (Salazie cirque landslides, Reunion Island). Landslides. doi:10.1007/s10346-013-0393-5

    Google Scholar 

  • Boggs PT, Tolle JW (1996) Sequential quadratic programming. Acta Numer 4:1–51

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity—duration control of shallow landslides and debris flows. Geogr Ann Ser A-Phys Geogr 62(1–2):23–27

    Article  Google Scholar 

  • Calvello M, Cascini L, Sorbino G (2007) A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surface. Int J Numer Anal Methods Geomech 32:327–351

    Article  Google Scholar 

  • Cancelli A, Nova R (1985) Landslides in soil debris cover triggered by rainstorms in Valtellina (central Alps - Italy). Proceedings of the 4th International Conference and Field Workshop on Landslides, 267–272

  • Capparelli G, Tiranti D (2010) Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides 7:401–410

    Article  Google Scholar 

  • Capparelli G, Versace P (2010) FLaIR and SUSHI: two mathematical models for early warning of landslides induced by rainfall. Landslides 8:67–79

    Article  Google Scholar 

  • Corominas J (2000) Keynote lecture. landslides and climate. In: Bromhead EN, Dixon N, Ibsen M-L (eds) Landslides in research, theory and practice: proceedings of the 8th International Symposium on Landslides. Thomas Telford, Cardiff

    Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96

    Article  Google Scholar 

  • De Montety V, Marc V, Emblanch C, Malet J-P, Bertrand C, Maquaire O, Bogaard TA (2007) Identifying origin of groundwater and flow processes in complex landslides affecting black marls: insights from an hydrochemistry survey. Earth Surf Proc Landf 32(1):32–48

    Article  Google Scholar 

  • Eberhardt E (2008) The role of advanced numerical methods and geotechnical field measurements in understanding complex deep-seated rock slope failure mechanisms. Can Geotech J 45(4):484–510

    Article  Google Scholar 

  • Flageollet J-C (1996) The time dimension in the study of mass movements. Geomorphology 15:185–190

    Article  Google Scholar 

  • Fukuzono T (1990) Recent studies on time prediction of slope failure. Landslide News 4:9–12

    Google Scholar 

  • Greco R, Giorgio M, Capparelli G, Versace P (2013) Early warning of rainfall-induced landslides based on empirical mobility function predictor. Eng Geol 153:68–79

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98(3–4):239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Herrera G, Fernandez-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009) A landslide forecasting model using ground based SAR data: The Portalet case study. Eng Geol 105:220–230

    Article  Google Scholar 

  • Hutchinson JN (2001) Landslide risk—to know, to foresee, to prevent. Geol Tec Ambient 9:3–22

    Google Scholar 

  • Intrieri E (2012) Design and implementation of landslide Early Warning Systems. PhD Thesis Manuscript, University of Florence, 216p

  • Kawamura K (1985) Methodology for landslide prediction. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco (California), 12–16 August 1985. Editor: Publications Committee of the ICSMFE, Balkema, Rottterdam, 3, 1155–1158

  • Kustas WP, Rango A, Uijlenhoet R (1994) A simple energy budget algorithm for the snowmelt runoff model. Water Resour Res 30(5):1515–1527

    Article  Google Scholar 

  • Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto-Rico. Geogr Ann Ser A-Phys Geogr 75(1–2):13–23

    Article  Google Scholar 

  • Malet JP (2003) Les “glissements de type écoulement” dans les marnes noires des Alpes du Sud. Morphologie, fonctionnement et modélisation hydro-mécanique. PhD Thesis manuscript, Université Louis Pasteur, Strasbourg, 394p

  • Malet J-P, Maquaire O (2003) Black marl earthflows mobility and long-term seasonal dynamic in southeastern France. In Proceeding of the 1st International Conference on Fast Slope Movements, Naples, Italy, Patron Editore, Bologna, 333–340

  • Malet J-P, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslides: application to the super-sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43(2002):33–54

  • Malet J-P, van Asch TWJ, van Beek LPH, Maquaire O (2005) Forecasting the behavior of complex landslides with a 2-5D spatially distributed hydrological model. Nat Hazards Earth Syst Sci 5:1–15

    Article  Google Scholar 

  • Maugeri M, Motta E, Raciti E (2006) Mathematical modeling of the landslides occurred at Gagliano Castelferrato (Italy). Nat Hazards Earth Syst Sci 6:133–143

    Article  Google Scholar 

  • Mayoraz F, Vulliet L (2002) Neural networks for slope movement prediction. Int J Geomech 2(2):153–173

    Article  Google Scholar 

  • Mayoraz F, Cornu T, Vulliet L (1996) Using neural networks to predict slope movements. In: Senneset K (ed) Proc. 7th Int. Symp. on Landslides, Trondheim, Norway. Balkema, Rotterdam, pp 295–300

    Google Scholar 

  • Michiue M (1985) A method for predicting slope failures on cliff and mountain due to heavy rain. J Nat Disaster Sci 7(1):1–12

    Google Scholar 

  • Mufundirwa A, Fujii Y, Kodama J (2010) A new practical method for prediction of geomechanical failure-time. Int J Rock Mech Min Sci 47(7):1079–1090

    Article  Google Scholar 

  • Petley DN, Bulmer MH, Murphy W (2002) Patterns of movement in rotational and translational landslides. Geology 30(8):719–722

    Article  Google Scholar 

  • Petley DN, Mantovani F, Bulmer MH, Zannoni A (2005) The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66:133–147

    Article  Google Scholar 

  • Pinault J–L, Schomburgk S (2006) Inverse modeling for characterizing surface water/groundwater exchanges. Water Resour Res 42:W08414. doi:10.1029/2005WR004587

    Google Scholar 

  • Pouya A, Léonard C, Alfonsi P (2007) Modelling a viscous rock joint activated by rainfall: application to the La Clapière landslide. Int J Rock Mech Min Sci 44:120–129

    Article  Google Scholar 

  • Rose ND, Hungr O (2007) Forecasting potential rock slope failure in open pit mines using the inverse velocity method. Int J Rock Mech Min Sci 44(2):308–320

    Article  Google Scholar 

  • Sirangelo B, Versace P (1992) Modelli stocastici di precipitazione e soglie pluviometriche di innesco dei movimenti franosi. Florence, Italy, pp D361–D373

    Google Scholar 

  • Sirangelo B, Versace P, Capparelli G (2003) Forewarning model for landslides triggered by rainfall based on the analysis of historical data file. Proceedings of the International Symposium “Hydrology of the Mediterranean and Semiarid Regions”, vol 278. IAHS Publ, Montpellier, pp 289–304

    Google Scholar 

  • Spickermann A, van Asch TWJ, Malet J-P (2009) Failure models and mechanisms in cohesive slopes; theoretical and numerical analysis of field and laboratory triggered events. In: Picarelli L, Tommasi P, Urcioli G, Versace P (eds) Proceedings of the IWL: rainfall induced landslides, vol 1. CIRIAM, Napoli, pp 103–110

    Google Scholar 

  • Travelletti J, Malet J-P (2012) Characterization of the 3D geometry of flow-like landslides: a methodology based on the integration of heterogeneous multi-source data. Eng Geol 128:30–48

    Article  Google Scholar 

  • van Asch TWJ, Malet J-P (2009) Flow-type failures in fine-grained soils: an important aspect in landslide hazard analysis. Nat Hazards Earth Syst Sci 9:1703–1711

    Article  Google Scholar 

  • van Asch TWJ, Malet J-P, van Beek LPH (2006) Influence of landslide geometry and kinematic deformation to describe the liquefaction of landslides: Some theoretical considerations. Eng Geol 88(1–2):59–69

    Article  Google Scholar 

  • van Asch TWJ, Malet J-P, van Beek LPH, Amitrano D (2007a) Techniques, advances, problems and issues in the modelling of landslide hazard. Bull Soc Geol Fr 178(2):6–35

    Google Scholar 

  • van Asch TWJ, van Beek LPH, Bogaard TA (2007b) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91:46–55

    Article  Google Scholar 

  • Versace P, Capparelli G (2008) Empirical hydrological models for early warning of landslides induced by rainfall, Proceedings 1st World Landslide Forum, Tokyo, 18–21 November 2008, 627–630

  • Voight B (1988) A method for prediction of volcanic eruptions. Nature 332:125–130

    Article  Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Rev Eng Geol VII:93–104

    Google Scholar 

  • Zvelebill J, Moser M (2001) Monitoring based time-prediction of rock falls: three case-histories. Phys Chem Earth 26(2):159–167

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded through the ANR (French Research Agency) RiskNat project “SISCA: Système intégré de Surveillance de Crises de glissements de terrain” (2009–2013). The monitoring dataset at Super-Sauze is part of the OMIV Observatory (Observatoire Multidisciplinaire des Instabilités de Versants: http://omiv.unistra.fr). The authors would like to thank the anonymous reviewer who helped us in improving the content and the readability of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bernardie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardie, S., Desramaut, N., Malet, JP. et al. Prediction of changes in landslide rates induced by rainfall. Landslides 12, 481–494 (2015). https://doi.org/10.1007/s10346-014-0495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0495-8

Keywords

Navigation