Skip to main content
Log in

An assessment of the material point method for modelling large scale run-out processes in landslides

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper demonstrates the predictive capabilities of a numerical model based on continuum mechanics for the simulation of run-out processes during landslides. It assesses a particle-based method that takes advantage of a double Lagrangian-Eulerian discretization and known as the material point method (MPM). Attention is given to the post-failure behaviour and, in particular, to the computation of important quantities such as run-out distance, maximum velocity and energy release. The MPM is a step forward in computational solid mechanics and has the potential to simulate large deformations such as those occurring during landslides. A validation is conducted based on simulations of two case studies of different scales, namely the Tokai-Hokuriku expressway failure in Japan and the Vajont landslide in Italy. The results show a very good agreement with field and other numerical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abe K, Soga K, Bandara S (2014) Material point method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140(3):1–16. doi:10.1061/(ASCE)GT.1943-5606.0001011

    Article  Google Scholar 

  • Abe K, Nakamura S, Nakamura H (2015) Large deformation analysis of slope models together with weak layers on shaking table by using material point method. In Computer Methods and Recent Advances in Geomechanics, London, pp 1805–1810

    Google Scholar 

  • Albaba A, Lambert S, Nicot F (2015) DEM simulation of dry granular flow impacting a rigid wall. In Computer Methods and Recent Advances in Geomechanics, London, pp 1869–1874

    Google Scholar 

  • Alonso EE, Pinyol NM, Yerro A (2014) Mathematical modelling of slopes. Procedia Earth Planet Sci 9:64–73. doi:10.1016/j.proeps.2014.06.002

    Article  Google Scholar 

  • Andersen S, Andersen L (2009) Material-point-method analysis of collapsing slopes. In: Proceedings of the 1st International Symposium on Computational Geomechanics (COMGEO I). Juan -les- Pins, France, pp 817–828

    Google Scholar 

  • Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14(1):137–147. doi:10.1007/s10596-009-9137-y

    Article  Google Scholar 

  • Ashwood W (2014) Numerical model for the prediction of total dynamic landslide forces on flexible barriers. University of British Columbia, Dissertation

    Google Scholar 

  • Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Compt Rendus Geosci 63:199–214. doi:10.1016/j.compgeo.2014.09.009

    Google Scholar 

  • Bardenhagen S, Kober EM (2004) The generalized interpolation material point method. Tech Sci Press 5(6):477–495

    Google Scholar 

  • Bardenhagen SG, Guilkey JE, Roessig KM, Brackbill JU, Witzel WM, Foster JC (2001) An improved contact algorithm for the material point method and application to stress propagation in granular material. Tech Sci Press 2(4):209–522

    Google Scholar 

  • Barla G, Paronuzzi P (2013) The 1963 Vajont landslide: 50th anniversary. Rock Mech Rock Eng 46(6):1267–1270. doi:10.1007/s00603-013-0483-7

    Article  Google Scholar 

  • Belytschko T, Liu WK, Moran B, Elkhodary K (2013). Nonlinear finite elements for continua and structures, John Wiley & Sons

  • Beuth L, Wieckowski Z, Vermeer PA (2011) Solution of quasi-static large-strain problems by the material point method. Int J Numer Anal Methods Geomech 35:1451–1465. doi:10.1002/nag.965

    Google Scholar 

  • Bistacchi A, Massironi M, Superchi L, Zorzi L, Francese R, Giorgi M, Chistolini F, Genevois R (2013) A 3D geological model of the 1963 Vajont landslide. Ital J Eng Geol Environ 2013(6):531–539. doi:10.4408/IJEGE.2013-06.B-51

    Google Scholar 

  • Boon C, Houlsby G, Utili S (2014) New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analyses. Geotechnique 64(10):800–816. doi:10.1680/geot.14.P.041

    Article  Google Scholar 

  • Brighenti R, Segalini A, Ferrero AM (2013) Debris flow hazard mitigation: a simplified analytical model for the design of flexible barriers. Comput Geotech 54:1–15. doi:10.1016/j.compgeo.2013.05.010

    Article  Google Scholar 

  • Buzzi O, Pedroso DM, Giacomini A (2008) Caveats on the implementation of the generalized material point method. Tech Sci Press 31(2):85–106

    Google Scholar 

  • Chen HX, Zhang LM (2014) Debris flow simulation considering distributed multiple source materials. In Numerical Methods in Geotechnical Engineering (NUMGE 2014), London, 339–343

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271. doi:10.1139/t96-005

    Article  Google Scholar 

  • Crosta G, Imposimato S, Roddeman D (2015) Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech Rock Eng. doi:10.1007/s00603-015-0769-z

    Google Scholar 

  • de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications, John Wiley & Sons

  • Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Geotechnique 49(3):387–403. doi:10.1680/geot.1999.49.3.387

    Article  Google Scholar 

  • Higo Y, Nishimura D, Oka F et al (2015) Dynamic analysis of unsaturated embankment considering the seepage flow by a GIMP-FDM coupled method. In Computer Methods and Recent Advances in Geomechanics, London, pp 1761–1766

    Google Scholar 

  • Hsü KJ (1975) Catastrophic debris stream (sturtzstroms) generated by rockfall. Bull Geol Soc Am 86(1):129–140. doi:10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

    Article  Google Scholar 

  • Huang J, da Silva MV, Krabbenhoft K (2013) Three-dimensional granular contact dynamics with rolling resistance. Comput Geotech 49:289–298. doi:10.1016/j.compgeo.2012.08.007

    Article  Google Scholar 

  • Hughes TJ (1984) Numerical implementation of constitutive models: rate-independent deviatoric plasticity. In Theoretical Foundation for Large-Scale Computations of Nonlinear Material Behavior, Dordrecht, pp 29–63

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623. doi:10.1139/t95-063

    Article  Google Scholar 

  • Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677. doi:10.1139/t84-073

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194. doi:10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Meth Geomech 37(15):2502–2522. doi:10.1002/nag.2146

    Article  Google Scholar 

  • Kerswell RR (2005) Dam break with Coulomb friction: a model for granular slumping? Phys Fluids 17(2005):1–16. doi:10.1063/1.1870592

    Google Scholar 

  • Kilburn CRJ, Petley DN (2003) Forecasting giant, catastrophic slope collapse: lessons from Vajont, northern Italy. Geomorphology 54(1-2):21–32. doi:10.1016/S0169-555X(03)00052-7

    Article  Google Scholar 

  • Kishi N, Ikeda K, Konno H, Kawase R (2000) Prototype impact test on rockfall retaining walls and its numerical simulation. Struct Under Shock Impact VI: 1-10

  • Krabbenhoft K, Lyamin AV, Huang J, Vicente da Silva M (2012) Granular contact dynamics using mathematical programming methods. Comput Geotech 43:165–176. doi:10.1016/j.compgeo.2012.02.006

    Article  Google Scholar 

  • Lacaze L, Kerswell RR (2009) Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys Rev Lett 102(March):3–6. doi:10.1103/PhysRevLett.102.108305

    Google Scholar 

  • Lacaze L, Phillips JC, Kerswell RR (2008) Planar collapse of a granular column: experiments and discrete element simulations. Phys Fluids 20:1–12. doi:10.1063/1.2929375

    Article  Google Scholar 

  • Lagrée P-Y, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology. J Fluid Mech 686(c):378–408. doi:10.1017/jfm.2011.335

    Article  Google Scholar 

  • Lajeunesse E, Mangeney-Castelnau A, Vilotte P (2004) Spreading of a granular mass on a horizontal plane. Phys Fluids 16(7):2371–2381. doi:10.1063/1.1736611

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331. doi:10.1016/S0013-7952(01)00090-4

    Article  Google Scholar 

  • Lemiale V, Nairn J, Hurmane A (2010) Material point method simulation of equal channel angular pressing involving large plastic strain and contact through sharp corners. Tech Sci Press 70(1):41–66

    Google Scholar 

  • Lian YP, Zhang X, Liu Y (2012) An adaptive finite element material point method and its application in extreme deformation problems. Comput Methods Appl Mech Eng 241–244:275–285. doi:10.1016/j.cma.2012.06.015

    Article  Google Scholar 

  • Llano-Serna MA (2012) Aplicação do Método do Ponto Material (MPM) a problemas geotécnicos (In Portuguese). Dissertation, University of Brasilia

  • Lo C-M, Lee C-F, Chou H-T, Lin M-L (2013) Landslide at Su-Hua highway 115.9k triggered by typhoon Megi in Taiwan. Landslides 11(2):293–304. doi:10.1007/s10346-013-0435-z

    Article  Google Scholar 

  • Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175–199. doi:10.1017/S0022112004009036

    Article  Google Scholar 

  • Lube G, Huppert H, Sparks R, Freundt A (2005) Collapses of two-dimensional granular columns. Phys Rev E 72(4):1–10. doi:10.1103/PhysRevE.72.041301

    Article  Google Scholar 

  • Mangeney-Castelnau A, Bouchut F, Vilotte JP, Lajeunesse E, Aubertin A, Pirulli M (2005) On the use of Saint Venant equations to simulate the spreading of a granular mass. J Geophys Res B Solid Earth 110:1–17. doi:10.1029/2004JB003161

    Article  Google Scholar 

  • Mast C, Arduino P, Mackenzie-Helnwein P, Miller GR (2014a) Simulating granular column collapse using the material point method. Acta Geotech 10(1):101–116. doi:10.1007/s11440-014-0309-0

    Article  Google Scholar 

  • Mast CM, Arduino P, Miller GR, Mackenzie-Helnwein P (2014b) Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures. Comput Geosci 18(5):817–830. doi:10.1007/s10596-014-9428-9

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097. doi:10.1139/t04-052

    Article  Google Scholar 

  • Muller-Salzburg L (1987) The Vajont catastrophe—a personal review. Eng Geol 24(1-4):423–444. doi:10.1016/0013-7952(87)90078-0

    Article  Google Scholar 

  • Nairn JA (2012) Open-source mpm and fea software – nairnmpm and nairnfea, http://osupdocs.forestry.oregonstate.edu/index.php/main_page (visited 2014)

  • Nairn JA (2013) Modeling imperfect interfaces in the material point method using multimaterial methods. Comput Model Eng Sci 1(1):1–15

    Google Scholar 

  • Numada M, Konagai K, Ito H, Johansson J (2003) Material point method for run-out analysis of earthquake-induced long-traveling soil flows. JSCE J Earthq Eng 27:3–6. doi:10.11532/proee2003.27.227

    Google Scholar 

  • Paronuzzi P, Bolla A (2012) The prehistoric Vajont rockslide: an updated geological model. Geomorphology 169–170:165–191. doi:10.1016/j.geomorph.2012.04.021

    Article  Google Scholar 

  • Pastor M, Blanc T, Haddad B, Drempetic V, Morles MS, Dutto P, Stickle MM, Mira P, Merodo JAF (2014) Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Arch Comput Methods Eng 22(1):67–104. doi:10.1007/s11831-014-9110-3

    Article  Google Scholar 

  • Pedroso DM (2015a) A consistent u-p formulation for porous media with hysteresis. Int J Numer Methods Eng 101(8):606–634. doi:10.1002/nme.4808

    Article  Google Scholar 

  • Pedroso DM (2015b) A solution to transient seepage in unsaturated porous media. Comput Methods Appl Mech Eng 285:791–816. doi:10.1016/j.cma.2014.12.009

    Article  Google Scholar 

  • Peila D, Ronco C (2009) Technical note: design of rockfall net fences and the new ETAG 027 European guideline. Nat Hazards Earth Syst Sci 9:1291–1298

    Article  Google Scholar 

  • Sassa K, Dang K, He B, Takara K, Inoue K, Nagai O (2014) A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen–Mayuyama megaslide in Japan. Landslides 11(5):827–842. doi:10.1007/s10346-014-0501-1

    Article  Google Scholar 

  • Sawada K, Moriguchi S, Yashima A, Zhang F, Uzuoka R (2004) Large deformation analysis in geomechanics using CIP method. JSME Int J 47(4):735–743. doi:10.1299/jsmeb.47.735

    Article  Google Scholar 

  • Sawada K, Moriguchi S, Oda K (2015) 3D simulation of an actual snow avalanche. In Computer Methods and Recent Advances in Geomechanics, London, pp 495–500

    Google Scholar 

  • Shin W, Miller GR, Arduino P, Mackenzie-Helnwein P (2010) Dynamic meshing for material point method computations. Eng Technol 48(9):84–92

    Google Scholar 

  • Skempton A, Hutchinson J (1969) Stability of natural slopes and embankment foundations. In: In Proc 7th Int Conf on Soil Mech and Found Eng State-of-art, México., pp 291–340

    Google Scholar 

  • Staron L, Hinch EJ (2005) Study of the collapse of granular columns using DEM numerical simulation. J Fluid Mech 545:1–27. doi:10.1017/S0022112005006415

    Article  Google Scholar 

  • Staron L, Hinch EJ (2007) The spreading of a granular mass: role of grain properties and initial conditions. Granul Matter 9(3-4):205–217. doi:10.1007/s10035-006-0033-z

    Article  Google Scholar 

  • Sulsky D, Chenb Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1-2):179–186. doi:10.1016/0045-7825(94)90112-0

    Article  Google Scholar 

  • Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1-2):236–252. doi:10.1016/0010-4655(94)00170-7

    Article  Google Scholar 

  • Thompson EL, Huppert HE (2007) Granular column collapses: further experimental results. J Fluid Mech 575:177–186. doi:10.1017/S0022112006004563

    Article  Google Scholar 

  • Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Adv Water Resour 59:146–156. doi:10.1016/j.advwatres.2013.06.009

    Article  Google Scholar 

  • Voight B, Faust C (1982) Frictional heat and strength loss in some rapid landslides. Geotechnique 32(1):43–54. doi:10.1680/geot.1982.32.1.43

    Article  Google Scholar 

  • Ward S, Day S (2011) The 1963 landslide and flood at Vaiont reservoir Italy. A tsunami ball simulation. Ital J Geosci 130(1):16–26. doi:10.3301/IJG.2010.21

    Google Scholar 

  • Wieckowski Z, Youn SK, Yeon JH (1999) A particle-in-cell solution to the silo discharging problem. Int J Numer Methods Eng 45(9):1203–1225. doi:10.1002/(SICI)1097-0207(19990730)45:9<1203::AID-NME626>3.0.CO;2-C

    Article  Google Scholar 

  • Wolter A, Havaej M, Zorzi L, Stead D, Clague J, Ghirotti M, Genevois R (2013) Exploration of the kinematics of the 1963 Vajont slide, Italy, using a numerical modelling toolbox. Ital J Eng Geol Environ 6:599–612

    Google Scholar 

  • Wolter A, Stead D, Clague J (2014) A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology 206:147–164. doi:10.1016/j.geomorph.2013.10.006

    Article  Google Scholar 

  • Wriggers P (2006) Computational contact mechanics. Second edi, Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Ye G (2004) Numerical study on the mechanical behavior of progressive failure of slope by 2D and 3D FEM. Dissertation, Gifu University

  • Zenit R (2005) Computer simulations of the collapse of a granular column. Phys Fluids 17(3):1–4. doi:10.1063/1.1862240

    Article  Google Scholar 

  • Zhang X, Krabbenhoft K, Pedroso DM, Lyamin AV, Sheng D, da Silva MV, Wang D (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142. doi:10.1016/j.compgeo.2013.07.001

    Article  Google Scholar 

  • Zienkiewicz O, Taylor R (2013) The Finite Element Method Set. Seventh edition. Elsevier Science & Technology Books

Download references

Acknowledgments

The authors acknowledge the support from the Coordination for the Improvement of Higher Level Education Personnel (CAPES), the Brazilian Research Council (CNPq) and the Australian Research Council (project DE120100163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Llano-Serna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llano-Serna, M.A., Farias, M.M. & Pedroso, D.M. An assessment of the material point method for modelling large scale run-out processes in landslides. Landslides 13, 1057–1066 (2016). https://doi.org/10.1007/s10346-015-0664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0664-4

Keywords

Navigation