Skip to main content
Log in

Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper summarizes the observation of the Potoška planina landslide, which is located in the Karavanke mountain range in NW Slovenia. The landslide lies at the tectonic contact between the Upper Carboniferous and the Permian clastic rocks, and the Upper Triassic to Lower Jurassic carbonate rocks. Due to active tectonics, the clastic rocks are heavily deformed and, consequently, highly prone to fast and deep weathering. The carbonate rocks are also highly fissured due to tectonic disturbances, which result in large quantities of talus and scree material covering the part below the crown. A greater spatial density of springs and wetlands, supplied from the infiltration, is evident at the contact between scree and clastic rocks. Due to prevailing geological, tectonic and hydrological conditions, the Potoška planina area is highly prone to different slope mass movements. This paper presents the monitoring of surface movement patterns at the toe of the Potoška planina landslide. The sliding mass is composed of tectonically deformed and weathered Upper Carboniferous and Permian clastic rocks covered with a large amount of talus material, which is unstable and prone to landslides. Additionally, the Bela torrent causes significant erosion and increases the possibility of mobilization of the sliding mass downstream. Based on said conditions and field survey work, the toe of the landslide is considered to be the most active part of the landslide. In order to estimate surface movement patterns over a monitoring period of 22.5 months and five reconnaissance campaigns, periodic monitoring was conducted using unmanned aerial vehicle (UAV)-based photogrammetry, which provides high-resolution images and tachymetric geodetic measurements that enable accurate control of photogrammetric analysis of surface displacements. Using the results of said periodic monitoring, analyses of UAV-based displacement patterns, surface elevations and volume changes were all modelled for four observation periods. According to our results, the movement pattern at the toe of the Potoška planina landslide indicates a steadily downslope movement of the entire area with localized surges superficial slips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abellán A, Oppikofer T, Jaboyedoff M, Rosser NJ, Lim M, Lato MJ (2014) Terrestrial laser scanning of rock slope instabilities. Earth Surf Process Landf 39(1):80–97

    Article  Google Scholar 

  • Agostini A, Tofani V, Nolesin T, Gigli G, Tanteri L, Rosi A, Cardellini S, Casagli N (2014) A new appraisal of the Ancona landslide based on geotechnical investigations and stability modelling. Q J Eng Geol Hydrogeol 47(1):29–43

    Article  Google Scholar 

  • Antonello G, Casagli N, Farina P, Leva D, Nico G, Sieber AJ, Tarchi D (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1(1):21–28

    Article  Google Scholar 

  • Bardi F, Frodella W, Ciampalini A, Bianchini S, Del Ventisette C, Gigli G, Fanti R, Moretti S, Basile G, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: the san Fratello case study. Geomorphology 223:45–60

    Article  Google Scholar 

  • Buckley SJ, Howell JS, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J Geol Soc 165:625–638

    Article  Google Scholar 

  • Bühler Y, Marty M, Ginzler C (2012) High resolution DEM generation in high-alpine terrain using airborne remote sensing techniques. Trans GIS 16(5):635–647

    Article  Google Scholar 

  • Čarman M, Jemec Auflič M, Komac M (2013) Landslides at a uranium mill tailing deposit site Boršt (Slovenia) detected by radar interferometry. Landslides. doi:10.1007/s10346-013-0454-9

    Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7:291–301

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2009) Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J Photogramm Remote Sens 64:598–611

    Article  Google Scholar 

  • Chandler J (1999) Effective application of automated digital photogrammetry for geomorphological research. Earth Surf Process Landforms 24:51–63

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with persistent Scatterer interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283

    Article  Google Scholar 

  • Colesanti C, Wasowski J (2004) Satellite SAR interferometry for wide-area slope hazard detection and site-specific monitoring of slow landslides. In: Lacerda E, Fontoura S (eds) Landslides: evaluation and stabilization. Taylor and Francis Group, London, pp. 795–802

    Google Scholar 

  • Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent Scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89

    Article  Google Scholar 

  • D’Oleire-Oltmanns S, Marzolff I, Klaus DP, Ries BJ (2012) Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens 4:3390–3416

    Article  Google Scholar 

  • Del Ventisette C, Intrier E, Luzi G, Casagli N, Fanti R, Leva D (2011) Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria region, Italy) threatened by a landslide. Nat Hazards Earth Syst Sci 11:2483–2495

    Article  Google Scholar 

  • Dewitte O, Jasselette JC, Cornet Y, Van Den Eeckhaut M, Collignon A, Poesen J, Demoulin A (2008) Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng Geol 99:11–22

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent Scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Furukawa Y, Ponce J (2010) Accurate, dense, and robust multi-view stereopsis. IEEE Trans Pattern Anal Mach Intell 32:1362–1376

    Article  Google Scholar 

  • Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262(5139):1525–1530

    Article  Google Scholar 

  • Gong J, Wang D, Li Y, Zhang L, Yue Y, Zhou J, Song Y (2010) Earthquake-induced geological hazards detection under hierarchical stripping classification framework in the Beichuan area. Landslides 7:187–189

    Article  Google Scholar 

  • Guzzetti F, Cesare Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Harwin S, Lucieer A (2012) Assessing the accuracy of Georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sens 4:1573–1599

    Article  Google Scholar 

  • Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (central Spanish Pyrenees. Remote Sens Environ 128:31–43

    Article  Google Scholar 

  • Intrieri E, Gigli G, Casagli N, Nadim F (2013) Landslide early warning system: toolbox and general concepts. Nat Hazards Earth Syst Sci 13:85–90

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abella’n A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. Jurnal of geophysical research. doi:10.1029/2011JF002289

    Google Scholar 

  • Jež J, Mikoš M, Trajanova M, Kumelj Š, Budkovič T, Bavec M (2008) Koroška Bela alluvial fan—the result of the catastrophic slope events (Karavnke Mountains, NW Slovenia. Geologija 51(2):219–227

    Article  Google Scholar 

  • Kenner R, Phillips M, Danioth C, Denier C, Zgraggen A (2011) Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss alps. Cold Reg Sci Technol 67:157–164

    Article  Google Scholar 

  • Kenner R, Bühler Y, Delaloye R, Ginzler C, Phillips M (2014) Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry. Geomorphology 206:492–504

    Article  Google Scholar 

  • Komac M (2012) Regional landslide susceptibility model using the Monte Carlo approach—the case of Slovenia. Geological Quarterly 56(1):41–54

    Google Scholar 

  • Komac M, Ribičič M (2006) Landslide susceptibility map of Slovenia at scale 1:250,000. Geologija 49(2):295–309

    Article  Google Scholar 

  • Komac M, Kumelj Š, Ribičič M (2009) Debris-flow susceptibility model of Slovenia at scale 1: 250,000. Geologija 52(1):87–104

    Article  Google Scholar 

  • Komac M, Holly R, Mahapatra P, Van der Marel H, Bavec M (2014) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides. doi:10.1007/s10346-014-0482-0

    Google Scholar 

  • Lavtižar J (1897) Zgodovina župnij in zvonovi v dekaniji Radolica, Ljubljana

  • Lowe DG (1999) Object recognition from local scale-invariant features. Proceedings of the International Conference on Computer Vision 2:1150–1157

    Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Lucieer A, De Jong SM, Turner D (2014a) Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Prog Phys Geogr 38(1):97–116

    Article  Google Scholar 

  • Lucieer A, Turner D, King DH, Robinson SA (2014b) Using an unmanned aerial vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int J Appl Earth Obs Geoinf 27:53–62

    Article  Google Scholar 

  • Luzi G, Pieraccini M, Noferini L, Guidi G, Moia F, Atzeni C (2004) Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans Geosci Remote Sens 42(11):2454–2466

    Article  Google Scholar 

  • Meisina C, Zucca F, Fossati D, Ceriani M, Allievi J (2006) Ground deformations monitoring by using the permanent scatterers technique: the example of the Oltrepo Pavese (Lombardia, Italy. Eng Geol 88:240–259

    Article  Google Scholar 

  • Mikoš M (2011) Public perception and stakeholder involvement in the crisis management of sediment-related disasters and their mitigation : the case of the Stože debris flow in NW Slovenia. Integr Environ Assess Manag 7(2):216–227

    Article  Google Scholar 

  • Monserrat O, Moya J, Luzi G, Crosetto M, Gili JA, Corominas J (2013) Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain). Nat Hazards Earth Syst Sci 13:1873–1887

    Article  Google Scholar 

  • Monserrat O, Crosetto M, Luzi G (2014) A review of ground-based SAR interferometry for deformation measurement. ISPRS J Photogramm Remote Sens 93:40–48

    Article  Google Scholar 

  • Niethammer U, Rothmund S, James MR, Travelletti J, Joswig M (2010) UAV-based remote sensing of landslide. In: Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sciences. Newcastle upon Tyne, UK, pp 496–501.

  • Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the super-Sauze landslide: evaluation and results. Eng Geol 128:2–11

    Article  Google Scholar 

  • Nolesini T, Di Traglia F, Del Ventisette C, Moretti S (2013) Deformations and slope instability on Stromboli Volcano: integration of GBInSAR data and analog modeling. Geomorphology 180–181:242–254

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzger R (2009) Characterization and monitoring of the Aknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019

    Article  Google Scholar 

  • Pelzer H (1985) Geodätische Netze in Landes- und Ingenieurvermessung II. Wittwer Verlag, Stuttgart

    Google Scholar 

  • Peterman V, Mesarič M (2012) Land survey from unmaned aerial veichle. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 39XXXIX-B1, pp 447–451.

  • Powers SP, Chiarle M, Savage WZ (1996) A digital photogrammetric method for measuring horizontal surficial movements on the Slumgullion earthflow, Hinsdale country, Colorado. Comput Geosci 22(6):651–663

    Article  Google Scholar 

  • Prokešová R, Kardoš M, Medveďová A (2010) Landslide dynamics from high-resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology 115:90–101

    Article  Google Scholar 

  • Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9:1921–1928

    Article  Google Scholar 

  • Raspini F, Ciampalini A, Del Conte S, Lombardi L, Nocentini M, Gigli G, Ferretti A, Casagli N (2015) Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy. Remote Sens 7:14576–14596

    Article  Google Scholar 

  • Rosi A, Vannocci P, Tofani V, Gigli G, Casagli N (2013) Landslide characterization using satellite interferometry (PSI), geotechnical investigations and numerical modelling: the case study of Ricasoli Village (Italy). Int J Geosci 4:904–918

    Article  Google Scholar 

  • Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens. doi:10.3390/rs60x000x

    Google Scholar 

  • Singleton A, Li Z, Hoey T, Muller JP (2014) Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens Environ 147:133–144

    Article  Google Scholar 

  • Snavely N, Seitz MS, Szeliski R (2007) Modeling the world from internet photo collections. Int J ComputVis doi. doi:10.1007/s11263-007-0107-3

    Google Scholar 

  • Stumpf A (2013) Landslide recognition and monitoring with remotely sensed data from passive optical sensors. Dissertation, University of Strasbourg, Strasbourg, France.

  • Stumpf A, Malet JP, Kerle N, Niethammer U, Rothmund S (2013) Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186:12–27

    Article  Google Scholar 

  • Stumpf A, Malet JP, Allemand P, Pierrot-Deseilligny M, Skupinski G (2015) Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 231:130–145

    Article  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Leva DD, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003a) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68:15–30

    Article  Google Scholar 

  • Tarchi D, Casagli N, Moretti S, Leva D, Sieber AJ (2003b) Monitoring landslide displacements by using ground-based synthetic aperture radar interferometry: application to the Ruinon landslide in the Italian alps. J Geophys Res. doi:10.1029/2002JB002204

    Google Scholar 

  • Tofani V, Raspini F, Catani F, Casagli N (2013) Persistent Scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5(3):1045–1065

    Article  Google Scholar 

  • Travelletti J, Malet JP, Delacourt C (2014) Image-based correlation of laser scanning point cloud time series forlandslide monitoring. Int J Appl Earth Obs Geoinf 32:1–18

    Article  Google Scholar 

  • Turner D, Lucieer A, Watson C (2012) An automated technique for generating Georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens 4:1392–1410

    Article  Google Scholar 

  • Wang S, Zhou Y, Wei C, Shao Y, Yan F (2008) Risk evaluation on the secondary geohazards of dammed lakes using remote sensing datasets, in the Wenchuan earthquake. J Remote Sens 12(6):900–907

    Google Scholar 

  • Žibret G, Komac M, Jemec M (2012) PSInSAR displacements related to soil creep and rainfall intensities in the alpine foreland of western Slovenia. Geomorphology 175–176:107–114

    Google Scholar 

  • Zupan G (1937) Krajevni leksikon dravske banovine. Uprava Krajevnega leksikona dravske banovine, Ljubljana

Download references

Acknowledgments

The Potoška planina landslide has the ongoing status of an International Programme on Landslides (IPL) project “Study of the slow moving landslide at Potoška planina (Karavanke Mountains, NW Slovenia)” (IPL -188). This research was financially supported by the Slovenian Research Agency (ARRS).

The authors would also like to thank the reviewer and the editor for their constructive comments that helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Peternel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peternel, T., Kumelj, Š., Oštir, K. et al. Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides 14, 395–406 (2017). https://doi.org/10.1007/s10346-016-0759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0759-6

Keywords

Navigation