Skip to main content
Log in

Slope failure in stratified rocks: a case from NE Himalaya, India

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Mountainous regions of India experience recurrent slope failures due to rapid urbanization. The main causes of slope failure are high precipitation aided by unplanned construction of cut slopes. Such slope failures are further aggravated because of the presence of low strength, highly jointed, stratified rocks rich in clay minerals. In general, effect of weathering is more pronounced in these rocks, which causes long-term time-dependent deterioration of the rocks as well as joint strength. In this regard, the present investigation deals with the causes, behavior, and mechanism of slope failure by examining a section in the North Eastern Himalayas. A detailed field investigation was carried out for examining the existing condition of slope, slope material, and joint parameters. Laboratory experiments like compressive and tensile strength tests along and across the lamination planes along with slake durability index tests were conducted to characterize the material and investigate the role of weathering in strength degradation. Later, numerical simulation was performed employing distinct element method to investigate the failure behavior, mechanism, and also the effect of water pressure in destabilizing the slope. The experimental result indicates directional strength variations parallel and perpendicular to bedding plane, which makes the rock incompetent to sustain external load. The presence of orthogonal joint sets accelerates the process of block detachment. Significant slaking was observed which further deteriorates and fragments the rock at deeper level. Numerical simulation shows that failure plane is dominantly planar (along the bedding parallel joints) and surficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • ASTM-D4543 (2008) Standard practices for preparing rock Core as cylindrical test specimens and shape tolerances. ASTM:1–9. doi:10.1520/D4543-08

  • Bell FG, Cripps JC, Culshaw MG (1986) A review of the engineering behaviour of soils and rocks with respect to groundwater. Geol Soc London Eng Geol Spec Publ 3:1–23. doi:10.1144/GSL.ENG.1986.003.01.01

    Google Scholar 

  • Bjerrum L (1967) Progressive failure in slopes of overconsolidated plastic clay and clay shales. J Soil Mech Found Div 93:1–49

    Google Scholar 

  • Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35:863–888. doi:10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  • Bobet A, Fakhimi A, Johnson S et al (2009) Numerical models in discontinuous media: review of advances for rock mechanics applications. J Geotech Geoenviron 135:1547–1561. doi:10.1061/(ASCE)GT.1943-5606.0000133

    Article  Google Scholar 

  • Bovis MJ (1985) Earthflows in the interior plateau, Southwest British Columbia. Can Geotech J 22:313–334. doi:10.1139/t85-045

    Article  Google Scholar 

  • Brace WF (1978) A note on permeability changes in geologic material due to stress. Pure Appl Geophys PAGEOPH 116:627–633. doi:10.1007/BF00876529

    Article  Google Scholar 

  • Chen C-S, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35:43–61. doi:10.1016/S0148-9062(97)00329-X

    Article  Google Scholar 

  • Cundall PA, Hart RD (1992) Numerical Modelling of Discontinua. Eng Comput 9:101–113. doi:10.1108/eb023851

    Article  Google Scholar 

  • Donath F (1961) Experimental study of shear failure in anisotropic rocks. Geol Soc Am Bull 72:985–990

    Article  Google Scholar 

  • Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int J Rock Mech Min Sci 41:69–87. doi:10.1016/S1365-1609(03)00076-5

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B, Read RS (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 35:222–233

    Article  Google Scholar 

  • Einstein H, Veneziano D, Baecher GB, O’Reilly K (1983) The effect of discontinuity persistence on rock slope stability. Int J Rock Mech Min Sci Geomech Abstr 20:227–236

    Article  Google Scholar 

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636. doi:10.1139/t93-054

    Article  Google Scholar 

  • Gao Q, Tao J, Hu J, Yu XB (2015) Laboratory study on the mechanical behaviors of an anisotropic shale rock. J Rock Mech Geotech Eng 7:213–219. doi:10.1016/j.jrmge.2015.03.003

    Article  Google Scholar 

  • Geertsema M, Cruden DM (2009) Rock movements in northeastern British Columbia. Proceedings of landslide processes conference. pp 31–36

  • Gencer M (1985) Progressive failure in stratified and jointed rock mass. Rock Mech Rock Eng 18:267–292

    Article  Google Scholar 

  • Ghosh S, Chakchhuak L (2013) Landslip kills 10 in Aizawl. The Telegraph

  • Gökceoglu C, Ulusay R, Sönmez H (2000) Factors affecting the durability of selected weak and clay-bearing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Eng Geol 57:215–237. doi:10.1016/S0013-7952(00)00031-4

    Article  Google Scholar 

  • Goodman RE (2013) Toppling - A fundamental failure mode in discontinuous materials-description and analysis. Geo-Congress 2013 © ASCE 2013. pp 2348–2378

  • Indraratna B, Ranjith PG, Gale W (1999) Single phase water flow through rock fractures. Geotech Geol Eng 17:211–240

    Article  Google Scholar 

  • Jing L, Hudson JA (2002) Numerical methods in rock mechanics. Int J Rock Mech Min Sci 39:409–427. doi:10.1016/S1365-1609(02)00065-5

    Article  Google Scholar 

  • Jing L, Ma Y, Fang Z (2001) Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method. Int J Rock Mech Min Sci 38:343–355. doi:10.1016/S1365-1609(01)00005-3

    Article  Google Scholar 

  • Kainthola A, Singh PK, Singh TN (2015) Stability investigation of road cut slope in basaltic rockmass, Mahabaleshwar, India. Geosci Front 6:837–845. doi:10.1016/j.gsf.2014.03.002

    Article  Google Scholar 

  • Kainthola A, Singh PK, Wasnik AB, Singh TN (2012) Distinct element Modelling of Mahabaleshwar road Cut Hill slope. Geomaterials 2:105–113. doi:10.4236/gm.2012.24015

    Article  Google Scholar 

  • Khanlari G, Rafiei B, Abdilor Y (2015) Evaluation of strength anisotropy and failure modes of laminated sandstones. Arab J Geosci 8:3089–3102. doi:10.1007/s12517-014-1411-1

    Article  Google Scholar 

  • Lee DH, Yang YE, Lin HM (2007) Assessing slope protection methods for weak rock slopes in southwestern Taiwan. Eng Geol 91:100–116. doi:10.1016/j.enggeo.2006.12.005

    Article  Google Scholar 

  • Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6:301–314. doi:10.1016/j.jrmge.2013.12.007

    Article  Google Scholar 

  • Mahanta B, Singh HO, Singh PK, Kainthola A, Singh TN (2016) Stability analysis of potential failure zones along NH-305. India. Nat Hazards 83:1341–1357. doi:10.1007/s11069-016-2396-8

  • Martin CD, Giger S, Lanyon GW (2016) Behaviour of weak shales in underground environments. Rock Mech Rock Eng 49:673–687. doi:10.1007/s00603-015-0860-5

    Article  Google Scholar 

  • Mesri G, Shahien M (2003) Residual shear strength mobilized in first-time slope failures. J Geotech Geoenvironnemental Eng 129:12–31. doi:10.1061/͑ASCE͒1090-0241͑2003͒129:1͑12͒

    Article  Google Scholar 

  • Miščević P, Vlastelica G (2014) Impact of weathering on slope stability in soft rock mass. J Rock Mech Geotech Eng 6:240–250. doi:10.1016/j.jrmge.2014.03.006

    Article  Google Scholar 

  • Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformation behavior of Himalayan schists. Int J Rock Mech Min Sci 40:3–23. doi:10.1016/S1365-1609(02)00103-X

    Article  Google Scholar 

  • Picarelli L, Urciuoli G, Mandolini A, Ramondini M (2006) Softening and instability of natural slopes in highly fissured plastic clay shales. Nat Hazards Earth Syst Sci 6:529–539. doi:10.5194/nhess-6-529-2006

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Cook NGW, Nolte DD (1988) Fluid percolation through single fractures. Geophys Res Lett 15:1247–1250

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Morris JP (2000) Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int J Rock Mech Min Sci 37:245–262. doi:10.1016/S1365-1609(99)00104-5

    Article  Google Scholar 

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22:251–261. doi:10.1016/0148-9062(85)92952-3

    Article  Google Scholar 

  • Regmi AD, Yoshida K, Dhital MR, Devkota K (2013) Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, lesser Himalaya Nepal. Landslides 10:1–13. doi:10.1007/s10346-011-0311-7

    Article  Google Scholar 

  • Schweizer RJ, Wright SG (1974) A survey and evaluation of remedial measures for earth slope stabilization. doi: Research Report 161-2F

  • Singh KK, Singh DN, Gamage RP (2016a) Effect of sample size on the fluid flow through a single fractured granitoid. J Rock Mech Geotech Eng 8:329–340. doi:10.1016/j.jrmge.2015.12.004

    Article  Google Scholar 

  • Singh KK, Singh DN, Ranjith PG (2015a) Laboratory simulation of flow through single fractured granite. Rock Mech Rock Eng 48:987–1000. doi:10.1007/s00603-014-0630-9

    Article  Google Scholar 

  • Singh KK, Singh DN, Ranjith PG (2014) Simulating flow through fractures in a rock mass using analog material. Int J Geomech 14:8–19. doi:10.1061/(ASCE)GM.1943-5622.0000295

    Article  Google Scholar 

  • Singh PK, Das R, Singh KK, Singh TN (2016b) Landslide in fractured and stratified rocks- a case from Aizawl, Mizoram, India. In: Venkatesh H, Venkateswarlu V (eds) International conference on recent advances in rock engineering (RARE-2016). Atlantis Press, Bengaluru, pp. 189–194

    Google Scholar 

  • Singh PK, Kainthola A, Panthee S, Singh TN (2016c) Rockfall analysis along transportation corridors in high hill slopes. Environ Earth Sci. doi:10.1007/s12665-016-5489-5

    Google Scholar 

  • Singh PK, Kainthola A, Prasad S, Singh TN (2015b) Protection measures on the failed cut-slope along the free expressway, Chembur, Mumbai, India. J Geol Soc India 86:687–695

  • Singh PK, Tripathy A, Kainthola A, Mahanta B, Singh V, Singh TN (2016d) Indirect estimation of compressive and shear strength from simple index tests. Eng Comput. doi:10.1007/s00366-016-0451-4

  • Stead D (2016) The influence of shales on slope instability. Rock Mech Rock Eng 49:635–651. doi:10.1007/s00603-015-0865-0

    Article  Google Scholar 

  • Števanić D, Miščević P (2007) The durability characterization of selected marls from Dalmatian region in Croatia. XVIII European Young Geotechnical Engineers’ Conference

    Google Scholar 

  • Tang H, Yong R, Ez Eldin MAM (2016) Stability analysis of stratified rock slopes with spatially variable strength parameters: the case of Qianjiangping landslide. Bull Eng Geol Environ. doi:10.1007/s10064-016-0876-4

    Google Scholar 

  • Urciuoli G (1990) Contributo alla caratterizzazione geotecnica delle frane dell’Appennino, Quaderni dell’Istituto di Tecnica delle Fondazioni e Costruzioni in Terra, Universita di Napoli Federico II, n. 1

  • Walsh JB (1981) Effect of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Min Sci Geomech Abstr 18:429–435. doi:10.1016/0148-9062(81)90006-1

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024. doi:10.1029/WR016i006p01016

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009) Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42:475–511. doi:10.1007/s00603-008-0002-4

    Article  Google Scholar 

  • Yagiz S (2001) Overview of classification and engineering properties of shales for design considerations. Constr Mater Issues:156–165

  • Yaşar E (2001) Failure and failure theories for anisotropic rocks. 17th International Mining Congress and Exhibition of Turkey-IMCET 2001. Turkey, pp 417–424

Download references

Acknowledgements

This paper is a continuation of the research work published in International Conference on Recent Advances in Rock Engineering (RARE-2016), Bengaluru, India. Authors would like to thank Rock Science and Rock Engineering lab, IIT Bombay and Geological Survey of India, Hyderabad, India, for necessary support and permission to publish this work. Authors are also thankful to the anonymous reviewers and editor for their comments which helped to modify the paper in present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Singh, K.K. & Singh, T.N. Slope failure in stratified rocks: a case from NE Himalaya, India. Landslides 14, 1319–1331 (2017). https://doi.org/10.1007/s10346-016-0785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0785-4

Keywords

Navigation