Skip to main content

Advertisement

Log in

Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

A Correction to this article was published on 17 February 2018

This article has been updated

Abstract

Shallow landslides (i.e., slide, flow, and complex) are widespread around the world, affecting the soil mantle and upper regolith as a result of the weathering of granitic bedrock, and periodically cause enormous social and economic damages. Shallow landslide hazards are predominantly due to the scarcity of warning signs during the pre-failure stage, high velocities reached in the post-failure phase, and an increase in mobilized volumes caused by the entrapment of material in the downhill path of the phenomena. Owing to the abovementioned aspects, susceptibility assessment of shallow landslides in weathered granitic rocks is a relevant issue for land use planning and design purposes. This study proposes a three-step methodology for the susceptibility assessment of these phenomena. The methodology has been tested and validated at the 1:10,000 scale over a 30.4-km2 area in southern Italy, where weathered granitic rocks are periodically affected by shallow landslides. This methodology is divided into three successive steps: step 1 consists of database creation, with an emphasis on the weathering grade map (including five weathering classes, from class II to class VI, each one characterized by comparable mechanical behavior), and steps 2 and 3 focus respectively on susceptibility map calibration and validation through statistical analyses. The area under the ROC curve (AUC) shows values ranging from 0.95 in step 2 (calibration) to 0.88 in step 3 (validation) and is a testament to the good overall predictive accuracy of the methodology. The obtained results demonstrate both the effectiveness and the consistency of the proposed methodology in performing susceptibility mapping of shallow landslides in weathered granitic rocks, as well as the important role played by the weathering grade map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 17 February 2018

    The published version of this article, unfortunately, contained error. Fig. 8 correction was not carried out. Given in this article is the correct figure.

References

  • Amodio-Morelli L, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Piccarreta G, Russo M, Scandone P, Zanettin-Lorenzoni E, Zuppetta A (1976) L’Arco Calabro-Peloritano nell’orogene appennino-maghrebide. Mem Soc Geol Ital 17:1–60

    Google Scholar 

  • Antronico L, Gullà G, Borrelli L (2004) Shallow instabilities for sliding flow: regional influence and area affects. In: Proc International Symposium on Landslide, June 28–July 2 2004, Rio de Janeiro. doi: https://doi.org/10.1201/b16816-197

  • Antronico L, Borrelli L, Coscarelli R, Pasqua AA, Petrucci O, Gullà G (2013) Slope movements induced by rainfalls damaging an urban area: the Catanzaro case study (Calabria, southern Italy). Landslides 10(6):801–814. https://doi.org/10.1007/s10346-013-0431-3

    Article  Google Scholar 

  • Antronico L, Borrelli L, Coscarelli R (2017) Recent damaging events on alluvial fans along a stretch of the Tyrrhenian coast of Calabria (southern Italy). Bull Eng Geol Environ 76(4):1399–1416. https://doi.org/10.1007/s10064-016-0922-2

    Article  Google Scholar 

  • Baum RL, Coe JA, Godt JW, Harp EL, Reid ME, Savage WZ, Schulz WH, Brien DL, Chleborad AF, McKenna JP, Michael JA (2005) Regional landslide hazard assessment for Seattle, Washington, USA. Landslides 2(4):266–279. https://doi.org/10.1007/s10346-005-0023-y

    Article  Google Scholar 

  • Baynes FJ, Dearman WR (1978) The relationship between the microfabric and the engineering properties of weathered granite. Bull Int Assoc Eng Geol 18(1):191–197. https://doi.org/10.1007/BF02635370

    Article  Google Scholar 

  • Boardman J (2016) The value of Google Earth™ for erosion mapping. Catena 143:123–127. https://doi.org/10.1016/j.catena.2016.03.031

    Article  Google Scholar 

  • Borrelli L, Gullà G (2002) Condizioni di alterazione nell’area a monte di Tropea (Calabria, Italia). CNR-IRPI Internal Report n 589

  • Borrelli L, Gullà G (2017) Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks. Geomorphology 290:288–316. https://doi.org/10.1016/j.geomorph.2017.04.025

    Article  Google Scholar 

  • Borrelli L, Greco R, Gullà G (2007) Weathering grade of rock masses as a predisposing factor to slope instabilities: reconnaissance and control procedure. Geomorphology 87(3):158–175. https://doi.org/10.1016/j.geomorph.2006.03.031

    Article  Google Scholar 

  • Borrelli L, Gioffrè D, Gullà G, Moraci N (2012) Susceptibility to shallow and rapid landslides in ground alteration: a possible contribution of propagation modeling. Rend Online Soc Geol Ital 21:534–536

    Google Scholar 

  • Borrelli L, Antronico L, Gullà G, Sorriso-Valvo GM (2014a) Geology, geomorphology and dynamics of the 15 February 2010 Maierato landslide (Calabria, Italy). Geomorphology 208:50–73. https://doi.org/10.1016/j.geomorph.2013.11.015

    Article  Google Scholar 

  • Borrelli L, Perri F, Critelli S, Gullà G (2014b) Characterization of granitoid and gneissic weathering profiles of the Mucone River basin (Calabria, southern Italy). Catena 113:325–340. https://doi.org/10.1016/j.catena.2013.08.014

    Article  Google Scholar 

  • Borrelli L, Cofone G, Coscarelli R, Gullà G (2015a) Shallow landslides triggered by consecutive rainfall events at Catanzaro strait (Calabria-Southern Italy). J Maps 11(5):730–744. https://doi.org/10.1080/17445647.2014.943814

    Article  Google Scholar 

  • Borrelli L, Coniglio S, Critelli S, La Barbera A, Gullà G (2015b) Weathering grade in granitoid rocks: the San Giovanni in Fiore area (Calabria, Italy). J Maps 12(2):260–275

    Article  Google Scholar 

  • Borrelli L, Critelli S, Gullà G, Muto F (2015c) Weathering grade and geotectonics of the western-central Mucone River basin (Calabria, Italy). J Maps 11(4):606–624. https://doi.org/10.1080/17445647.2014.933719

    Article  Google Scholar 

  • Brand EW, Phillipson HB (1985) Sampling and testing of residual soils: a review of international practice. Technical committee on sampling and testing of residual soils. International Society for Soil Mechanics and Foundation Engineering Scorpion Press 1–194

  • Brunsden D (1985) Landslide types, mechanisms, recognition, identification. In: Morgan CS (ed) Landslides in the South Wales Coalfield, Proceedings Symposium. The Polytechnic of Wales, pp 19–28

  • Bui D, Pradhan B, Lofman O, Dick O (2012) Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: a comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geophys J R Astron Soc 171–172:12–29

    Google Scholar 

  • Calcaterra D, Parise M (2010) Weathering in the crystalline rocks of Calabria, Italy, and relationships to landslides. In: Calcaterra D, Parise M (eds) Weathering as a predisposing factor to slope movements. Geol Soc Lond, Eng Geol Spec Publ 23:105–130

  • Calvello M, Ciurleo M (2016) Optimal use of thematic maps for landslide susceptibility assessment by means of statistical analyses: case study of shallow landslides in fine grained soils. In: Proc ISL 2016, Landslides and engineered slopes experience—theory and practice, Napoli, Italy, vol. 2. pp. 537–544 (ISBN: 978-1-138-02988-0)

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publishers, pp. 135–175. doi: https://doi.org/10.1007/978-94-015-8404-3_8

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102(3-4):164–177. https://doi.org/10.1016/j.enggeo.2008.03.016

    Article  Google Scholar 

  • Cascini L, Gullà G (1993) Caratterizzazione fisico-meccanica dei terreni prodotti dall’alterazione di rocce gneissiche. Riv Ital Geotec 2:125–147

    Google Scholar 

  • Cascini L, Ciurleo M, Di Nocera S, Gullà G (2015) A new–old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy. Geomorphology 241:371–381. https://doi.org/10.1016/j.geomorph.2015.04.017

    Article  Google Scholar 

  • Cascini L, Ciurleo M, Di Nocera S (2017) Soil depth reconstruction for the assessment of the susceptibility to shallow landslides in fine-grained slopes. Landslides 14(2):459–471. https://doi.org/10.1007/s10346-016-0720-8

    Article  Google Scholar 

  • Chigira M, Ito E (1999) Characteristic weathering profiles as basic causes of shallow landslides. In: Yagi N, Yamagami T, Jiang JC (eds) Slope Stability Engineering, vol 2. Balkema, Rotterdam, pp 1145–1150

    Google Scholar 

  • Chigira M, Mohamad Z, Sian LC, Komoo I (2011) Landslides in weathered granitic rocks in Japan and Malaysia. Bull Geol Soc Malaysia 57:1–6

    Google Scholar 

  • Chiu CF, Ng CWW (2014) Relationships between chemical weathering indices and physical and mechanical properties of decomposed granite. Eng Geol 179:76–89. https://doi.org/10.1016/j.enggeo.2014.06.021

    Article  Google Scholar 

  • Ciurleo M, Calvello M, Cascini L (2016) Susceptibility zoning of shallow landslides in fine grained soils by statistical methods. Catena 139:250–264. https://doi.org/10.1016/j.catena.2015.12.017

    Article  Google Scholar 

  • Ciurleo M, Cascini L, Calvello M (2017) A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng Geol 223:71–81. https://doi.org/10.1016/j.enggeo.2017.04.023

    Article  Google Scholar 

  • Conforti M, Robustelli G, Muto F, Critelli S (2012) Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy). Nat Hazards 61(1):127–141. https://doi.org/10.1007/s11069-011-9781-0

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • Cucci L, Tertulliani A (2006) I terrazzi marini nell’area di Capo Vaticano (Arco Calabro): solo un record di sollevamento regionale o anche di deformazione cosismica? Ital J Quat Sci 1:89–101

    Google Scholar 

  • Das I, Sahoo S, van Westen C, Stein A, Hack R (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114(4):627–637. https://doi.org/10.1016/j.geomorph.2009.09.023

    Article  Google Scholar 

  • Deere DU, Patton FD (1971) Slope stability in residual soils. Proceedings of the 4th Pan American Conference on Soil Mechanics and Foundation Engineering, San Juan, Puerto Rico, pp 87–170

  • Duncan JM (1992) State-of-the-art: static stability and deformation analysis. Stability and performance of slopes and embankments-II. Geotechnical Engineering Division Special Publication. Am Soc Civ Eng 31:222–266

  • Durgin PB (1977) Landslides and the weathering of granitic rocks. Geological Society of America. Rev Eng Geol 3:127–131

    Google Scholar 

  • Esposito C, Scarascia-Mugnozza G, Trigila A, Finoia MG (2012) Susceptibility assessment of shallow landslides in the Messina province. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes. Protecting society through improved understanding, vol 1. CRC Press, Taylor & Francis, Banff, pp 825–830

    Google Scholar 

  • Fairbridge RW (ed) (1968) The encyclopedia of geomorphology. Reinhold, New York, p 1295

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ, On behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3-4):85–98. https://doi.org/10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Ferrari E, Caloiero T, Coscarelli R (2013) Influence of the North Atlantic Oscillation on winter rainfall in Calabria (southern Italy). Theor Appl Climatol 114(3-4):479–494. https://doi.org/10.1007/s00704-013-0856-6

    Article  Google Scholar 

  • Fookes PG, Dearman WR, Franklin JA (1971) Some engineering aspects of rock weathering. J Eng Geol 4(3):139–185. https://doi.org/10.1144/GSL.QJEG.1971.004.03.01

    Article  Google Scholar 

  • Fressard M, Thiery Y, Maquaire O (2014) Which data for quantitative landslide susceptibility mapping at operational scale: case study of the Pays d’Auge plateau hillslopes (Normandy, France). Nat Hazards Earth Syst Sci 14(3):569–588. https://doi.org/10.5194/nhess-14-569-2014

    Article  Google Scholar 

  • Gan JKM, Fredlund DG (1996) Shear strength characteristics of two saprolitic soils. Can Geotech J 33(4):595–609. https://doi.org/10.1139/t96-085-307

    Article  Google Scholar 

  • Gioffrè D, Moraci N, Borrelli L, Gullà G (2016) Numerical code calibration for the back analysis of debris flow runout in southern Italy. Rend Online Soc Geol Ital 21:534–536

    Google Scholar 

  • Goodman RE, Shi G (1985) Block theory and its applications to rock engineering. Prentice Hall

  • Gullà G, Borrelli L, Greco R (2004) Weathering of rock-mass as possible characterizing factor of predisposition to slope instabilities. In: Proc. of the 9th international symposium on landslides, Rio de Janeiro, June 28–July 7, 2004, pp 103–108

  • Gullà G, Antronico L, Borrelli L, Caloiero T, Coscarelli R, Iovine G, Nicoletti PG, Pasqua AA, Petrucci O, Terranova O (2009) Indicazioni conoscitive e metodologiche connesse all'evento di dissesto idrogeologico dell’autunno-inverno 2008-2009 in Calabria. Geol Calabria 10:4–21

    Google Scholar 

  • Gullà G, Aceto L, Borrelli L (2012) Terreni di alterazione da rocce cristalline. Rend Online Soc Geol Ital 21:548–550

    Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for and old problem. Earth Sci Rev 112(1-2):42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Heidari M, Khanlari GR, Momeni AA, Jafargholizadeh H (2011) The relationship between geomechanical properties and weathering indices of granitic rocks, Hamedan, Iran. Geomech Geoeng 6(1):59–68. https://doi.org/10.1080/17486021003706580

    Article  Google Scholar 

  • Ietto F (2012) Cause dell’evento alluvionale del 19 ottobre 2010 nel bacino del Torrente delle Grazie (Tropea, Calabria). In: Proc Conference “Il Dissesto Idrogeologico: il pericolo geoidrologico e la gestione del territorio in Italia”, Roma, pp 195–199

  • Ietto A, Calcaterra D (1988) Deformazioni gravitative profonde e tettonica presso Tropea (M.te Poro, Calabria). Mem Soc Geol Ital 41:911–915

    Google Scholar 

  • Ietto A, Ietto F (2004) Age and history of the weathering of granitoids in southern Calabria (Italy). Geogr Fis Din Quat 27:37–45

    Google Scholar 

  • Ietto F, Perri F, Fortunato G (2015) Lateral spreading phenomena and weathering processes from the Tropea area (Calabria, southern Italy). Environ Earth Sci 73(8):4595–4608. https://doi.org/10.1007/s12665-014-3745-0

    Article  Google Scholar 

  • Ietto F, Perri F, Cella F (2017) Weathering characterization for landslides modeling in granitoid rock masses of the Capo Vaticano promontory (Calabria, Italy). Landslides 15(1):1–20. https://doi.org/10.1007/s10346-017-0860-5

    Google Scholar 

  • Irfan TY, Dearman WR (1978) The engineering petrography of a weathered granite in Cornwall, England. Q J Eng Geol 11:223–244

    Article  Google Scholar 

  • Jenks GF (1977) Optimal data classification for choropleth maps. In: Geography Department Occasional Paper No. 22. University of Kansas, Lawrence, KS, pp 1977

  • Kayastha P, Dhital MR, De Smedt F (2013) Evaluation of the consistency of landslide susceptibility mapping: a case study from the Kankai watershed in east Nepal. Landslides 10(6):785–799. https://doi.org/10.1007/s10346-012-0361-5

    Article  Google Scholar 

  • Kim MS, Onda Y, Uchida T, Kimd JK (2016) Effects of soil depth and subsurface flow along the subsurface topography. Geomorphology 271:40–54. https://doi.org/10.1016/j.geomorph.2016.07.031

    Article  Google Scholar 

  • Lacerda WA (2007) Landslide initiation in saprolite and colluvium in southern Brazil: field and laboratory observations. Geomorphology 87(3):104–119. https://doi.org/10.1016/j.geomorph.2006.03.037

    Article  Google Scholar 

  • Le Pera E, Sorriso-Valvo M (2000) Weathering and morphogenesis in a Mediterranean climate, Calabria, Italy. Geomorphology 34(3-4):251–270. https://doi.org/10.1016/S0169-555X(00)00012-X

    Article  Google Scholar 

  • Le Pera E, Critelli S, Sorriso-Valvo M (2001) Weathering of gneiss in Calabria, Southern Italy. Catena 42(1):1–15. https://doi.org/10.1016/S0341-8162(00)00117-X

    Article  Google Scholar 

  • Lee S, Chwae U, Min K (2002) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46(3-4):149–162. https://doi.org/10.1016/S0169-555X(02)00057-0

    Article  Google Scholar 

  • Lee C, Huang C, Lee J, Pan K, Lin M, Dong J (2008) Statistical approach to storm event-induced landslides susceptibility. Nat Hazards Earth Syst Sci 8(4):941–960. https://doi.org/10.5194/nhess-8-941-2008

    Article  Google Scholar 

  • Lumb P (1962) The properties of decomposed granite. Geotechnique 12(3):226–243. https://doi.org/10.1680/geot.1962.12.3.226

    Article  Google Scholar 

  • Marjanović (2013) Comparing the performance of different landslide susceptibility models in ROC space. In: Landslide science and practice. Volume 1: landslide inventory and susceptibility and hazard zoning pp 579–584

  • Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298. https://doi.org/10.1016/S0001-2998(78)80014-2

    Article  Google Scholar 

  • Nadim F, Einstein H, Roberds W (2005) Probabilistic stability analysis for individual slopes in soil and rock. State of the Art Report (SOA3). In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Proceedings of the International Conference on “Landslide Risk Management”, Vancouver (Canada). Taylor and Francis, London, pp 63–98

    Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmezb H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3-4):171–191. https://doi.org/10.1016/j.enggeo.2008.01.004

    Article  Google Scholar 

  • Nicotera P (1959) Rilevamento geologico del versante settentrionale del Monte Poro (Calabria). Mem Note Ist Geol Appl 7:1–92

    Google Scholar 

  • Ollier C (1984) Weathering, 2nd edn. Longman, London 270

    Google Scholar 

  • Ollier C (1988) The regolith in Australia. Earth Sci Rev 25(5-6):355–361. https://doi.org/10.1016/0012-8252(88)90003-7

    Article  Google Scholar 

  • Padrones JT, Ramos NT, Dimalanta CB, Queaño KL, Faustino-Eslava DV, Yumul GP, Watanabe K (2017) Landslide susceptibility mapping in a geologically complex terrane: a case study from northwest Mindoro, Philippines. Manila J Sci 10:25–44

    Google Scholar 

  • Palacios D, Garcia R, Rubio V, Vigil R (2003) Debris flows in a weathered granitic massif: Sierra de gredos, Spain. Catena 51(2):115–140. https://doi.org/10.1016/S0341-8162(02)00094-2

    Article  Google Scholar 

  • Papazzoni C, Sirotti A (1999) Heterostegina Papyracea, Sequenza, 1880 from the upper Miocene of Cessaniti (Vibo Valentia, Calabria, southern Italy). Boll Soc Paleontol Ital 38:15–21

    Google Scholar 

  • Perri F, Ietto F, Le Pera E, Apollaro C (2014) Weathering processes affecting granitoid profiles of Capo Vaticano (Calabria, southern Italy) based on petrographic, mineralogic and reaction path modelling approaches. Geol J 51:368–386

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, De Paz A, Marturia J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30(3):281–295. https://doi.org/10.1023/B:NHAZ.0000007169.28860.80

    Article  Google Scholar 

  • Sato HP, Harp EL (2009) Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China, using satellite imagery and Google Earth. Landslides 6(2):153–159. https://doi.org/10.1007/s10346-009-0147-6

    Article  Google Scholar 

  • Savage WZ, Godt JW, Baum RL (2004) Modelling time-dependent areal slope stability. In: Lacerda WA, Erlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilisation, Proceedings of the 9th international symposium on landslides. A.A. Balkema Publishers, London, pp 23–36

    Google Scholar 

  • Scarciglia F, Critelli S, Borrelli L, Coniglio S, Muto F, Perri F (2016) Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: new insights into their formation processes and rates. Sed Geol 336:46–67. https://doi.org/10.1016/j.sedgeo.2016.01.015

    Article  Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. TRB Special Report 247 National Academy Press, Washington D.C., pp 129–177

    Google Scholar 

  • Steger S, Brenning A, Bell R, Glade T (2017) The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides 14(5):1767–1781. https://doi.org/10.1007/s10346-017-0820-0

    Article  Google Scholar 

  • Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probabilistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121:1337–1350

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293. https://doi.org/10.1126/science.3287615

    Article  Google Scholar 

  • Tangestani MH (2009) A comparative study of Dempster-Shafer and fuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW Iran. J Asian Earth Sci 35(1):66–73. https://doi.org/10.1016/j.jseaes.2009.01.002

    Article  Google Scholar 

  • Tobe H, Chigira M (2006) Causes of shallow landslides of weathered granitic rocks—from the view point of weathering styles and petrologic textures. Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Universal Academy Press, Inc./Tokyo, Japan, pp 493–501

  • Tortorici L, Monaco C, Tansi C, Cocina O (1995) Recent and active tectonics in the Calabrian arc (Southern Italy). Tectonophysics 243(1-2):37–55. https://doi.org/10.1016/0040-1951(94)00190-K

    Article  Google Scholar 

  • Tortorici G, Bianca M, De Guidi G, Monaco C, Tortorici L (2003) Fault activity and marine terracing in the Capo Vaticano area (southern Calabria) during the middle–late Quaternary. Quat Int 101:269–278

    Article  Google Scholar 

  • van Westen CJ (1994) GIS in landslide hazard zonation: a review, with examples from the Andes of Colombia. In: Price MF, Heywood DI (eds) Mountain environments and geographic information systems. Taylor and Francis Publishers, pp 135–165

  • Whalley WB, Turkington AV (2001) Weathering and geomorphology. Geomorphology 41(1):1–3. https://doi.org/10.1016/S0169-555X(01)00099-X

    Article  Google Scholar 

  • Yin KJ, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rock. In: Proc. 5th Int Symposium on Landslides (Lausanne, Switzerland) vol 2l:1269–1272

Download references

Acknowledgements

This work was conducted under the Project DTA.AD003.077.001 “Tipizzazione di eventi di dissesto idrogeologico” of the CNR Department of “Scienze del Sistema Terra e Tecnologie per l’Ambiente.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Borrelli.

Additional information

The original version of this article was revised: The published version of this article, unfortunately, contained error. Figure 8 correction was not carried out. Given in this article is the correct figure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrelli, L., Ciurleo, M. & Gullà, G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map. Landslides 15, 1127–1142 (2018). https://doi.org/10.1007/s10346-018-0947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-0947-7

Keywords

Navigation