Skip to main content

Advertisement

Log in

Silurian carbonate platforms and extinction events—ecosystem changes exemplified from Gotland, Sweden

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Recent and ancient carbonate platforms are major marine ecosystems, built by various carbonate-secreting organisms with different sensitivity for environmental change. For this reason, carbonate platforms are excellent sensors for changes in contemporaneous marine environments. A variety of ecosystem changes in carbonate platforms have previously been recognised in the aftermath of mass extinction events. This paper addresses how two Silurian extinction events among graptolites, conodonts, and pentamerid brachiopods can be related to changes in the style of carbonate production and general evolution of low latitude carbonate platforms in a similar way as previously reported from the major five mass extinctions of the Phanerozoic. Strata formed on Gotland during the Mulde and Lau events share remarkably many similarities but are strikingly different in composition compared to other strata on the island. The event-related strata is characterised by the sudden appearance of widespread oolites, deviating reef composition, flat-pebble conglomerates, abundant micro- and macro-oncoids, stromatolites, and other microbial facies suggesting decreased bioturbation levels in contemporaneous shelf seas. Importantly, these changes can be tied to high-resolution biostratigraphic frameworks and global stable isotope excursions. The anomalous intervals may therefore be searched for elsewhere in order to test their regional or global significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baarli BG, Johnson ME, Antoshkina AI (2003) Silurian stratigraphy and palaeogeography of Baltica. In: Landing E, Johnson ME (eds) Silurian lands and seas—paleogeography outside of Laurentia. New York State Mus Bull 493:3–34

    Google Scholar 

  • Bickert T, Pätzold J, Samtleben C, Munnecke A (1997) Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochim Cosmochim Acta 61:2717–2730

    Article  Google Scholar 

  • Boucot AJ (1991) Developments in Silurian studies since 1839. In: Bassett MG, Lane PD, Edwards D (eds) The Murchison Symposium. Spec Pap Palaeontol 44:91–107

    Google Scholar 

  • Calner M (1999) Stratigraphy, facies development, and depositional dynamics of the Late Wenlock Fröjel Formation, Gotland, Sweden. GFF 121:13–24

    Google Scholar 

  • Calner M (2002) A lowstand epikarstic intertidal flat from the middle Silurian of Gotland, Sweden. Sediment Geol 148:389–403

    Article  Google Scholar 

  • Calner M (2005) A Late Silurian extinction event and anachronistic period. Geology 33:305–308

    Article  Google Scholar 

  • Calner M, Jeppsson L (2003) Carbonate platform evolution and conodont stratigraphy during the middle Silurian Mulde Event, Gotland, Sweden. Geol Mag 140:173–203

    Article  Google Scholar 

  • Calner M, Säll E (1999) Transgressive oolites onlapping a Silurian rocky shoreline unconformity, Gotland, Sweden. GFF 121:91–100

    Google Scholar 

  • Calner M, Sandström O, Mõtus A-M (2000) Significance of a halysitid–heliolitid mud-facies autobiostrome from the Middle Silurian of Gotland, Sweden. Palaios 15:509–521

    Google Scholar 

  • Calner M, Jeppsson L, Eriksson MJ (2004a) Ytterholmen revisited—implications for the Late Wenlock stratigraphy of Gotland and coeval extinctions. GFF 126:231–241

    Google Scholar 

  • Calner M, Jeppsson L, Munnecke A (2004b) The Silurian of Gotland—Part I. Review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development. In: Munnecke A, Servais T, Schulbert C (eds) Early Palaeozoic palaeogeography and palaeoclimate (IGCP 503). Erlanger Geol Abh Sonderbd 5:113–131

    Google Scholar 

  • Calner M, Kozłowska-Dawidziuk A, Masiak M (2004c) Correlation of the middle Silurian graptolite crisis and coeval laminated sediments across the Baltic Shield and East European Platform. In: Munnecke A, Servais T, Schulbert C (eds) Early Palaeozoic palaeogeography and palaeoclimate (IGCP 503). Erlanger Geol Abh Sonderbd 5:25–26

    Google Scholar 

  • Cherns L (1982) Palaeokarst, tidal erosion surfaces and stromatolites in the Silurian Eke formation of Gotland, Sweden. Sedimentology 29:819–833

    Google Scholar 

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10:578–596

    PubMed  Google Scholar 

  • Groves JR, Calner M (2004) Lower Triassic oolites in Tethys: a sedimentologic response to the end-Permian mass extinction. Geol Soc Am Annual Meeting, Denver 2004, Abstr with Progr 36:336

    Google Scholar 

  • Hagadorn, JW, Bottjer DJ (1997) Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic–Phanerozoic transition. Geology 25:1047–1050

    Google Scholar 

  • Hagadorn JW, Bottjer DJ (1999) Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios 14:73–85

    Google Scholar 

  • Hallock P, Hine AC, Vargo GA, Elrod JA, Jaap WC (1988) Platforms of the Nicaraguan rise: Examples of the sensivity of carbonate sedimentation to excess trophic resources. Geology 16:1104–1107

    Article  Google Scholar 

  • Hede JE (1925) Gottlands silurstratigrafi. Sve Geol Undersök C 305:1–100

    Google Scholar 

  • Jaeger H (1991) New standard graptolite zonal sequence after the “big crisis” at the Wenlockian/Ludlovian boundary (Silurian). N Jb Geol Paläont Abh 182:303–354

    Google Scholar 

  • Jeppsson L (1990) An oceanic model for lithological and faunal changes tested on the Silurian record. J Geol Soc London 147:663–674

    Google Scholar 

  • Jeppsson L (1997) The anatomy of the mid-early Silurian Ireviken Event. In: Brett C, Baird GC (eds) Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York, pp 451–492

    Google Scholar 

  • Jeppsson L, Aldridge RJ (2000) Ludlow (late Silurian) oceanic episodes and events. J Geol Soc London 157:1137–1148

    Google Scholar 

  • Jeppsson L, Calner M (2003) The Silurian Mulde event and a scenario for secundo–secundo events. Trans Roy Soc Edinburgh, Earth Sci 93:135–154

    Google Scholar 

  • Jeppsson L, Aldridge RJ, Dorning KJ (1995) Wenlock (Silurian) oceanic episodes and events. J Geol Soc London 152:487–498

    Google Scholar 

  • Kaljo D, Kiipli T, Martma T (1997) Correlation of carbon isotope event markers through the Wenlock-Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr Palaeoclimatol Palaeoecol 132:211–223

    Article  Google Scholar 

  • Kaljo D, Martma T, Männik P, Viira V (2003) Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bull Soc Geol France 174:59–66

    Article  Google Scholar 

  • Kaljo D, Brazauskas A, Kaminskas D, Martma T, Musteikis P (2004) The Ludfordian carbon isotope excursion in the Vidukle core, Lithuania, its relations with the Lau Oceanic event and environmental background in NW Baltica. Ber Inst Erdwiss Univ Graz 8:60–62

    Google Scholar 

  • Klaamann E, Einasto R (1977) Coral reefs of Baltic Silurian (structure, facies relations). In: Kaljo D, Einasto R (eds) Ecostratigraphy of the East Baltic. Acad Sci Estonian Inst Geol, pp 35–41

  • Koren’ TN (1991) The lundgreni extinction event in central Asia and its bearing on graptolite biochronology within the Homerian. Proceedings of the Estonian Academy of Sciences. Geology 40:74–78

    Google Scholar 

  • Kozłowski W (2003) Age, sedimentary environment and palaeogeographical position of the late Silurian oolitic beds in the Holy Cross Mountains (Central Poland). Acta Geol Pol 53:341–357

    Google Scholar 

  • Lehnert O, Fryda J, Buggisch W, Manda S (2003) A first report of the Ludlow Lau event from the Prague Basin (Barrandian, Czech Republic). In: Ortega G, Aceñolaza GF (eds) Proceedings of the 7th International Graptolite Conference and Field Meeting of the International Subcommission on Silurian Stratigraphy: Tucumán 2003, Serie Correlación Geológica, vol 18, pp 139–144

  • Lenz AC, Kozłowska-Dawidziuk A (2001) Upper Wenlock (Silurian) graptolites of the Arctic Canada: pre-extinction, lundgreni Biozone fauna. Palaeontogr Can 20:1–61

    Google Scholar 

  • Long DGF (1993) The Burgsvik Beds, an upper Silurian storm generated sand ridge complex in southern Gotland, Sweden. Geol Fören Stockholm Förh 115:299–309

    Google Scholar 

  • Manten AA (1971) Silurian reefs of Gotland. Dev Sedimentol 13, 539 pp

    Google Scholar 

  • Mori K (1968) Stromatoporoids from the Silurian of Gotland, I. Stockholm Contrib Geol 19:1–100

    Google Scholar 

  • Mori K (1970) Stromatoporoids from the Silurian of Gotland, II. Stockholm Contrib Geol 22:1–152

    Google Scholar 

  • Munnecke A, Samtleben C, Servais T, Vachard D (1999) SEM-observation of calcareous micro- and nannofossils incertae sedis from the Silurian of Gotland, Sweden: preliminary results. Geobios 32:307–314

    Article  Google Scholar 

  • Munnecke A, Samtleben C, Bickert T (2003) The Ireviken event in the lower Silurian of Gotland, Sweden— relation to similar Palaeozoic and Proterozoic events. Palaeogeogr Palaeoclimatol Palaeoecol 195:99–124

    Article  Google Scholar 

  • Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41

    Article  Google Scholar 

  • Põldvere A. (2003) Ruhnu (500) drill core. Estonian Geol Sect 5:1–76

    Google Scholar 

  • Poprawa P, Sliaupa S, Stephenson R, Lazauskiene J (1999) Late Vendian–early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics 314:219–239

    Article  Google Scholar 

  • Porębska E, Kozłowska-Dawidziuk A, Masiak M (2004) The lundgreni event in the Silurian of the east European Platform, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 213:271–294

    Article  Google Scholar 

  • Pruss S, Fraiser M, Bottjer DJ (2004) Proliferation of early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction. Geology 32:461–464

    Article  Google Scholar 

  • Saltzman MR (2001) Silurian δ13C stratigraphy: a view from North America. Geology 29:671–674

    Article  Google Scholar 

  • Samtleben C, Munnecke A, Bickert T, Pätzold J (1996) The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geol Rdsch 85:278–292

    Article  Google Scholar 

  • Samtleben C, Munnecke A, Bickert T (2000) Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies 43:1–38

    Google Scholar 

  • Schlager W (1991) Depositional bias and environmental change— important factors in sequence stratigraphy. Sediment Geol 70:109–130

    Article  Google Scholar 

  • Schlager W, Reijmer JJG, Droxler A (1994) Highstand shedding of carbonate platforms. J Sediment Res B 64:270–281

    Google Scholar 

  • Schubert JK, Bottjer DJ, (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883–886

    Article  Google Scholar 

  • Sepkoski JJ Jr (1982) Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin Heidelberg New York, pp 371–385

    Google Scholar 

  • Sepkoski JJ Jr, Bambach RK, Droser ML (1991) Secular changes in Phanerozoic event bedding and the biological overprint. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 298–312

    Google Scholar 

  • Sheehan PM, Harris MT (2004) Microbialite resurgence after the late Ordovician extinction. Nature 430:75–77

    Article  PubMed  Google Scholar 

  • Stel JH, de Coo JCM (1977) The Silurian upper Burgsvik and lower Hamra-Sundre Beds, Gotland. Scripta Geol 44:1–43

    Google Scholar 

  • Talent JA, Mawson R, Andrew AS, Hamilton PJ, Whitford DJ (1993) Middle Palaeozoic extinction events: faunal and isotopic data. Palaeogeogr Palaeoclimatol Palaeoecol 104:139–152

    Article  Google Scholar 

  • Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the late Devonian, Alberta basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181:127–151

    Article  Google Scholar 

  • Wigforss-Lange J (1999) Carbon isotope δ13C enrichment in upper Silurian (Withcliffian) marine calcareous rocks in Scania, Sweden. GFF 121:273–279

    Google Scholar 

  • Woods AD, Bottjer DJ, Mutti M, Morrison J (1999) Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27:645–648

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to reviewer Axel Munnecke, who also provided the palaeogeographic map, and to editor André Freiwald for helpful comments to the manuscript. This research was funded by the Swedish National Research Council (VR) and Crafoordska stiftelsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Calner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calner, M. Silurian carbonate platforms and extinction events—ecosystem changes exemplified from Gotland, Sweden. Facies 51, 584–591 (2005). https://doi.org/10.1007/s10347-005-0050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0050-0

Keywords

Navigation