Skip to main content

Advertisement

Log in

Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Neogene coastal sediments of the Mediterranean provide an excellent laboratory for a quantitative study of palaeoenvironmental parameters and their response to climate change. In order to examine change in environmental parameters during deposition of Tortonian limestone of southern central Crete, we use integrated field and biofacies analysis together with a detailed study of foraminfera and non-geniculate red algae. Patterns in the relative abundance of non-geniculate coralline red algae are interpreted by comparison with data from modern non-geniculate coralline red algae and with additional information from the studied sediments. Based on these integrated datasets, four red algal associations are identified: a Lithophyllum-dominated association restricted to the upper photic zone in warm-temperate environments, a Lithothamnion-dominated association found in the lower photic zone in warm-temperate environments, a Spongites-dominated association typical for shallow warm-temperate to tropical environments and an association with dominant Mesophyllum which is characteristic for the lower photic zone in warm-temperate to tropical environments. We introduce coralline red algal indices in order to quantify changes in environmental parameters. We recognise four warm intervals within a succession of the Tortonian limestones in southern central Crete. During the most extensive interval, widespread coral carpets formed under prevalent oligotrophic conditions. Analysis of the stratigraphic architecture shows that warm intervals are related to sea-level highstands and therefore may reflect global climatic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adey WH (1986) Coralline red algae as indicators of sea-level. In: van de Plassche O (ed) Sea level research: a manual for the collection and evaluation of data. Free University, Amsterdam, pp 229–279

    Google Scholar 

  • Adey WH, Townsend RA, Boykins WT (1982) The crustose coralline algae (Rhodophyta, Corallinaceae) of the Hawaiian Islands. Smithson Contrib Mar Sci 15:1–75

    Google Scholar 

  • Allmon WD (1988) Ecology of recent turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios 3:259–284

    Article  Google Scholar 

  • Angelier J, Lyberis N, Le Pichon X, Barrier P, Huchon P (1982) The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics 86:159–196

    Article  Google Scholar 

  • Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr Palaeoclimatol Palaeoecol 137:173–187

    Article  Google Scholar 

  • Betzler C, Brachert TC, Nebelsick N (1997) The warm temperate carbonate province. A review of the facies, zonations, and deliminations. Cour Forschinst Senckenberg 201:83–99

    Google Scholar 

  • Bosence DWJ (1976) Ecological studies on two unattached coralline algae from western Ireland. Paleontology 19:365–395

    Google Scholar 

  • Bosence DWJ (1985) The morphology and ecology of a mound building coralline alga (Neogoniolithon strictum) from the Florida Keys. Paleontology 28:189–206

    Google Scholar 

  • Bosence DWJ (1991) Coralline algae: mineralogy, taxonomy and palaeoecology. In: Riding R (ed) Calcareous algae and stromatolites. Springer, New York, pp 98–113

    Google Scholar 

  • Bosence DWJ, Pedley M (1982) Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr Palaeoclimatol Palaeoecol 38:9–43

    Article  Google Scholar 

  • Brachert TC, Betzler C, Davies PJD, Feary DA (1993) Climate change: control of carbonate platform development (Eocene-Miocene, Leg 133, Northeastern Australia). Proc ODP Sci Res 133:291–300

    Google Scholar 

  • Brachert TC, Betzler C, Braga JC, Martin JM (1996) Record of climatic change in neritic carbonates: turnover in biogenic associations and depositional modes (Late Miocene, southern Spain). Geol Rundsch 85:327–337

    Article  Google Scholar 

  • Brachert TC, Hultzsch N, Knoerich AC, Krautworst UMR, Stueckrad OM (2001) Climatic signatures in shallow-water carbonates: high-resolution stratigraphic markers in structurally controlled carbonate buildups (Late Miocene, southern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 175:211–237

    Article  Google Scholar 

  • Brachert TC, Krautworst UMR, Stueckrad OM (2002) Tectono-climatic evolution of a Neogene intramontane basin (Late Miocene Carboneras subbasin, southeast Spain): revelations from basin mapping and biofacies analysis. Basin Res 14:503–521

    Article  Google Scholar 

  • Brachert TC, Forst MH, Pais JJ, Legoinha P, Reijmer JJG (2003) Lowstand carbonates, highstand sandstones? Sediment Geol 155:1–12

    Article  Google Scholar 

  • Braga JC, Aguirre J (1995) Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Rev Palaeobot Palynol 86:265–285

    Article  Google Scholar 

  • Braga JC, Aguirre J (2001) Coralline algal assemblages in Upper Neogene reef and temperate carbonates in southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41

    Article  Google Scholar 

  • Braga JC, Aguirre J (2004) Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier reef environments in the northern Great Barrier Reef margin. Coral Reefs 23:547–558

    Google Scholar 

  • Braga JC, Bosence DWJ, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535–547

    Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57

    Article  Google Scholar 

  • Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sediment Geol 60:333–346

    Article  Google Scholar 

  • di Geronimo R, Alongi G, Giaccone G (1993) Formazione organogene a Lithophyllum lichenoides Philippi (Rhodophyta, Corallinales) nel mesolitorale di Capo S. Alessio (Sicilia orientale). Boll Acc Gioenia Sci Nat 26:145–172

    Google Scholar 

  • Esteban M (1996) An overview of Miocene reefs from Mediterranean areas: general trends and facies models. In: Franseen EK, Esteban M, Ward WC, Rouchy J-M (eds) Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions. SEPM, Concept Sedimentol Paleont 5:3–55

  • Fassoulas C (2001) The tectonic development of a Neogene basin at the leading edge of the active European margin: the Heraklion Basin, Crete, Greece. J Geodyn 31:49–79

    Article  Google Scholar 

  • Figueiredo M, Kain JM, Norton TA (1992) Crustose coralline algae responses to epiphytic cover. Br Phycol J 27:89

    Google Scholar 

  • Fluegel E (2004) Microfacies of carbonate rocks. Springer, Berlin, 976 pp

    Google Scholar 

  • Forst MH (2003) Zur Karbonatsedimentologie, Biofazies und sequenzstratigraphischen Architektur eines fossilen Hochenergie-Schelfs aus dem Neogen der Algarve (Miozaen, Suedportugal). PhD thesis, Mainz University, 175 pp

  • Freiwald A, Henrich R (1994) Reefal coralline algal buildups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 31:963–984

    Article  Google Scholar 

  • Halfar J, Godinez-Orta L, Ingle JRJC (2000) Microfacies analysis of recent carbonate environments in the southern Gulf of California, Mexico—a model for warm-temperate to subtropical carbonate formation. Palaios 15:323–342

    Google Scholar 

  • Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguín JE, Borges JM (2004) Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology 32:213–216

    Article  Google Scholar 

  • Hallock P, Glenn EC (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1:55–64

    Article  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398

    Article  Google Scholar 

  • Hansen HJ, Buchardt B (1977) Depth distribution of Amphistegina in the Gulf of Elat, Israel. Utrecht Micropaleont Bull 15:205–224

    Google Scholar 

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, Gracianski P-C, Vail PR (1998) Mesozoic and Cenozoic sequence stratigraphic framework of European basins. In: Mesozoic and Cenozoic sequence stratigraphy of European basins eds.: de Gracianski P-C, Hardenbol J, Thierry J Vail PR, Society for Sedimentary Geology, Tulsa, SEPM spec. pub. 60:3–14

  • Haunold TG, Baal C, Piller WE (1997) Benthic foraminiferal associations in the Northern Bay of Safaga, Red Sea, Egypt. Marine Micropaleont 29:185–210

    Article  Google Scholar 

  • Haunold TG, Baal C, Piller WE (1998) Larger foraminifera [In: Haunold TG, Piller WE (eds) The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. V. Foraminifera]. Abh Senckenberg Natf Ges 548:155–180

  • Henrich R, Freiwald A, Betzler C, Bader B, Schaefer P, Samtleben C, Brachert T, Wehrmann A, Zankl H, Kuehlmann DHH (1995) Controls on modern carbonate sedimentation on warm-temperate to arctic coasts, shelves and seamounts in the northern hemisphere: implications for fossil counterparts. Facies 32:71–108

    Article  Google Scholar 

  • Hilgen FJ, Krijgsman W, Langereis CG, Lourens LJ, Santarelli A, Zachariasse WJ (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet Sci Lett 136:495–510

    Article  Google Scholar 

  • Hohenegger J (1994) The distribution of living larger foraminifera NW of Sesoko-Jima, Okinawa, Japan. Mar Ecol 15:291–334

    Article  Google Scholar 

  • Hohenegger J (1995) Depth estimation by proportions of living larger foraminifera. Mar Micropaleont 26:31–47

    Article  Google Scholar 

  • Hohenegger J, Yordanova E, Yoshikatsu N, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleont 36:109–168

    Article  Google Scholar 

  • Hollaus SS, Hottinger L (1997) Temperature dependance of endosymbiontic relationships? Eclogae Geol Helv 90:591–597

    Google Scholar 

  • Hottinger L (1977) Distribution of larger Peneroplidae, Borelis, and Nummulitidae in the Gulf of Elat, Red Sea. Utrecht Micropaleont Bull 15:35–109

    Google Scholar 

  • Hottinger L, Halicz E, Reiss Z (1993) Recent Foraminiferida from the Gulf of Aqaba, Red Sea, Classis IV, Historia Naturalis, Opera 33. Slov Akad Znanosti Umetnosti, Ljubljana, 179 pp

    Google Scholar 

  • Ingram RL (1954) Terminology for the thickness of stratification and parting units in sedimentary rocks. Geol Soc Am Bull 65:937–938

    Article  Google Scholar 

  • Irvine LM, Chamberlain YM (1994) Seaweeds of the British Isles, vol 1, Rhodophyta Part 2B, Corallinales Hildenbrandiales. Natural History Museum, London, 276 pp

    Google Scholar 

  • James DW (2000) Diet, movement, and covering behavior of the sea urchin Toxopneustes roseus in rhodolith beds in the Gulf of California. Mar Biol 137:913–923

    Article  Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. SEPM Spec Publ 56:1–22

    Google Scholar 

  • James NP, Bone Y, von der Borch CC, Gostin VA (1992) Modern carbonate and terrigenous clastic sediments on a cool-water, high-energy, mid-latitude shelf: Lacepede, southern Australia. Sedimentology 39:877–903

    Article  Google Scholar 

  • James NP, Bone Y, Collins LB, Kyser TK (2001) Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cool-water carbonate shelf. J Sediment Res 71:549–567

    Article  Google Scholar 

  • Johansen HW (1981) Coralline algae, a first synthesis. CRC, Boca Baton, FL 239 pp

    Google Scholar 

  • Jorissen FJ (1988) Benthic foraminifera from the Adriatic Sea. Principles of phenotypic variation. Utrecht Micropaleont Bull 37:1–157

    Google Scholar 

  • Kidwell SM, Aigner T (1985) Sedimentary dynamics of complex shell beds: implications for ecologic and evolutionary patterns. Lect Notes Earth Sci 1:382–395

    Google Scholar 

  • Krijgsman W, Hilgen FJ, Langereis CG, Santarelli A, Zachariasse WJ (1995) Late Miocene magnetostratigraphy, biostratigraphy and cyclostratigraphy in the Mediterranean. Earth Planet Sci Lett 136:475–494

    Article  Google Scholar 

  • Kroeger KF (2004) Sedimentary environments and climate change: a case study (late Miocene, central Crete). PhD thesis, Mainz University, 243 pp. http://ubm.opus.hbz-nrw.de/volltexte/2005/699/pdf/diss.pdf

  • Kuiper KF, Hilgen FJ, Steenbrink J, Wijbrans JR (2004) 40Ar/39Ar ages of tephras intercalated in astronomically-tuned Neogene sedimentary sequences in the eastern Mediterranean. Earth Planet Sci Lett 222:583–597

    Article  Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46:105–126

    Google Scholar 

  • Langer M, Lipps JH (2003) Foraminiferal distribution and diversity, Madang Reef and Lagoon, Papua New Guinea. Coral Reefs 22:143–154

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42

    Article  Google Scholar 

  • Lee JJ, Anderson OR (1991) Symbiosis in Foraminifera. In: Lee JJ, Anderson OR (eds) Biology of Foraminifera. Academic, London, pp 147–220

    Google Scholar 

  • Lees A (1975) Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Mar Geol 19:159–198

    Article  Google Scholar 

  • Lees A, Buller AT (1972) Modern temperate-water and warm-water shelf carbonate sediments contrasted. Mar Geol 13:M67–M73

    Article  Google Scholar 

  • Littler M (1973a) The distribution, abundance and communities of deepwater Hawaiian crustose Corallinaceae (Rhodophyta, Cryptonemiales). Pac Sci 27:281–289

    Google Scholar 

  • Littler M (1973b) The population and community structure of Hawaiian fringing reef crustose Corallinaceae (Rhodophyta, Cryptonemiales). J Exp Mar Biol 11:103–120

    Article  Google Scholar 

  • Lukasik JJ, James NP, McGowran B, Bone Y (2000) An epeiric ramp; low-energy, cool-water carbonate facies in a Tertiary inland sea, Murray Basin, South Australia. Sedimentology 47:851–881

    Article  Google Scholar 

  • Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, eastern Australia. Facies 42:25–34

    Article  Google Scholar 

  • Martin JM, Braga JC, Betzler C, Brachert TC (1996) Sedimentary model and high-frequency cyclicity in a Mediterranean, shallow-shelf, temperate-carbonate environment (uppermost Miocene, Agua Amarga Basin, southern Spain). Sedimentology 43:263–277

    Article  Google Scholar 

  • Meijer PTh, Slingerland R, Wortel MJR (2004) Tectonic control on past circulation of the Mediterranean Sea: a model study of the Late Miocene. Paleoceanography 19:1–19

    Google Scholar 

  • Meulenkamp JE, Georgiadou-Dikeoulia E, Jonkers HA, Böger H (1979a) Field guide to the Neogene of Crete. Publ Dept Geol Paleont, Athens Univ 32:1–32

    Google Scholar 

  • Meulenkamp JE, Jonkers A, Spaak P (1979b) Late Miocene to Early Pliocene developement of Crete. In: Proceedings of the VIth Colloquium on the Geology of the Aegean Region, Athens. pp 137–149

  • Meulenkamp JE, van der Zwaan GJ, van Wamel WA (1994) On the Late Miocene to Recent vertical motions in the Cretan segment of the Hellenic arc. Tectonophysics 234:52–73

    Article  Google Scholar 

  • Minnery GA (1990) Crustose coralline algae from the Flower Garden Banks, northwestern Gulf of Mexico: controls on distribution and growth morphology. J Sediment Petrol 60:992–1007

    Google Scholar 

  • Nelson CS, Keane SL, Head PS (1988) Non-tropical carbonate deposits on the modern New Zealand shelf. Sediment Geol 60:71–94

    Article  Google Scholar 

  • Pedley M (1998) A review of sediment distributions and processes in Oligo-Miocene ramps of southern Italy and Malta (Mediterranean divide). Geol Soc Lond, Spec Publ 149:163–179

    Article  Google Scholar 

  • Piller WE (1994) The northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. Beitr Palaeont 18:1–73

    Google Scholar 

  • Pomar L, Obrador A, Westphal H (2002) Sub-wavebase cross-bedded grainstones on a distally steepened carbonate ramp, Upper Miocene, Menorca, Spain. Sedimentology 49:139–169

    Article  Google Scholar 

  • Postma G, Fortuin AR, van Wamel WA (1993) Basin-fill patterns controlled by tectonics and climate: the Neogene “fore-arc” basins of eastern Crete as a case history. Publ Int Assoc Sediment 20:335–362

    Google Scholar 

  • Rasser MW, Piller WE (1999) Aplication of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J Micropaleont 18:67–80

    Google Scholar 

  • Rasser MW, Piller WE (2004) Crustose algal frameworks from the Eocene Alpine foreland. Palaeogeogr Palaeoclimatol Palaeoecol 206:21–39

    Article  Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba. Springer, Berlin, 454 pp

    Google Scholar 

  • Reuter M, Brachert TC, Kroeger KF (2006) Shallow-marine carbonates of the tropical-temperate transition zone: effects of hinterland climate and basin physiography (late Miocene, Crete, Greece). Geol Soc Lond, Spec Publ 255:159–180

    Article  Google Scholar 

  • Riegl B, Piller WE (1997) Distribution and environmental control of coral assemblages in northern Safaga Bay (Red Sea, Egypt). Facies 36:141–162

    Article  Google Scholar 

  • Riegl B, Piller WE (1999) Coral frameworks revisted-reefs and coral carpets in the northern Red Sea. Coral Reefs 18:241–253

    Article  Google Scholar 

  • Rosmena-Rodriguez R, Woelkerling WJ, Foster MS (1999) Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia 38:401–417

    Article  Google Scholar 

  • Seibold E (1970) Nebenmeere im humiden und ariden Klimabereich. Geol Rundsch 60:73–105

    Article  Google Scholar 

  • Seilacher A (1984) The Jeram Model: event condensation in a modern intertidal environment. In: Bayer U (ed) Sedimentary and evolutionary cycles. Springer, Berlin, pp 336–341

    Google Scholar 

  • Smith AM, Nelson CS (1996) Differential abrasion of bryozoan skeletons: taphonomic implications for paleoenvironmental interpretation. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Proceedings of the 10th International Bryozoology Conference Wellington New Zealand. Nat Inst Water Atmospheric Res Ltd., Wellington, pp 305–313

    Google Scholar 

  • Ten Veen JH, Postma G (1999) Neogene tectonics and basin fill patterns in the Hellenic outer-arc (Crete, Greece). Basin Res 11:223–241

    Article  Google Scholar 

  • Van den Hoek C, Cortel-Breeman AM, Wanders JBW (1975) Algal zonation in the fringing coral reef in Curacao, Netherlands Antilles, in relation to zonation of corals and gorgonians. Aquat Bot 1:269–308

    Article  Google Scholar 

  • Veron JEN (1995) Corals in space and time. Comstock, Cornell, 321 pp

    Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York, 471 pp

    Google Scholar 

  • Woelkerling WJ (1988) The coralline red algae, an analysis of genera and subfamilies of non-geniculate Carallinaceae. Oxford University Press, Oxford, 268 pp

    Google Scholar 

  • Zachariasse WJ (1975) Planctonic foraminiferal biostratigraphy of the Late Neogene of Crete (Greece). Utrecht Micropaleont Bull 11:1–143

    Google Scholar 

Download references

Acknowledgements

We are grateful to C. Fassoulas (Iraklion) for discussion in the field, J.C. Braga (Granada) for support in coralline red algal classification and K. Grimm (Mainz) for nannoplankton ages. The constructive review of W.E. Piller (Graz) led to considerable improvement of this manuscript. We thank the Graduiertenkolleg “Stoffbestand und Entwicklung von Kruste und Mantel” for funding of the PhD work and travel funding of K.F.K.. T.C.B. and M.R. acknowledge funding by the Deutsche Forschungsgemeinschaft (Br 1153/7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Kroeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroeger, K., Reuter, M. & Brachert, T. Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies 52, 381–409 (2006). https://doi.org/10.1007/s10347-006-0077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-006-0077-x

Keywords

Navigation