Skip to main content
Log in

Chelonid Alphaherpesvirus 5 DNA in Fibropapillomatosis-Affected Chelonia mydas

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Fibropapillomatosis is a panzootic and chronic disease among Chelonia mydas—usually associated with anthropogenic impacts. This study contributes towards understanding fibropapillomatosis implications for C. mydas populations as a reflector of environmental quality, via prevalence and histological, molecular and blood analyses at a World Heritage site in southern Brazil. Sixty-three juvenile C. mydas (31.3–54.5 cm curved carapace length–CCL) were sampled during two years. Eighteen specimens (~ 29%) had tumours (which were biopsied), while 45 had none. Degenerative changes in the epidermis and Chelonid alphaherpesvirus 5 DNA detection with three variants support a herpesvirus infection. Phylogenetic analysis indicated that variants A and B were similar to a herpesvirus lineage from the Atlantic group, but variant C was similar to a herpesvirus from the eastern Pacific lineage and represents the first published case for marine turtles off Brazil. Significantly lower levels of seven blood parameters, but greater numbers of eosinophils, were observed in tumour-afflicted animals. These observations were attributed to metabolism efficiencies and/or differences in diet associated with temporal-recruitment bias and disease development, and greater non-specific immune stimulation. While most animals had adequate body condition independent of disease, longer-term studies are required to elucidate any protracted population effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguirre AA, Lutz PL (2004) Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator?. EcoHealth 1: 275–283

    Google Scholar 

  • Aguirre AA, Balazs GH (2000) Blood biochemistry values of green turtles, Chelonia mydas, with and without fibropapillomatosis. Comparative Haematology International 10: 132–137

    Article  CAS  Google Scholar 

  • Aguirre AA, Balazs GH, Spraker TR, Gross TS (1995) Adrenal and hematological responses to stress in juvenile green turtles (Chelonia mydas) with and without fibropapillomatosis. Physiological Zoology 68: 831–854

    Article  Google Scholar 

  • Bolten AB, Bjorndal KA (1992) Blood profiles for a wild population of green turtles (Chelonia mydas) in the southern Bahamas: size-specific and sex-specific relationships. Journal of Wildlife Disease 28: 407–413

    Article  CAS  Google Scholar 

  • Bourjea J, Lapègue S, Gagnevin L, Broderick D, Mortimer JA, Ciccione S, Roos D, Taquet C, Grizel H (2007) Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean. Molecular Ecology 16: 175–186

    Article  CAS  PubMed  Google Scholar 

  • Campbell TW (2014) Clinical pathology. In: Current therapy in reptile medicine and surgery, Mader DR, Divers SJ (editors), Missouri: Elsevier, 70–92

    Chapter  Google Scholar 

  • Carretero R, Sektioglu IM, Garbi, N, Salgado OC, Beckhove P (2015) Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nature Immunology 16: 609–617

    Article  CAS  PubMed  Google Scholar 

  • Coelho VF, Domit C, Broadhurst MK, Nishizawa H, Prosdocimi L, Almeida FS (2018) Intra-specific variation in skull morphology of juvenile Chelonia mydas in the southwestern Atlantic Ocean. Marine Biology 165:174

    Article  Google Scholar 

  • Chaloupka M, Work TM, Balazs GH, Murakawa SKK, Morris M (2008) Cause-specific temporal and spatial trends in green sea turtle strandings in the Hawaiian archipelago (1982–2004). Marine Biology 154: 887–898

    Article  Google Scholar 

  • Diniz GS, Barbarino E, Lourenço SO (2012) On the chemical profile of marine organisms from the coastal subtropical environments: gross composition and nitrogen-to-protein conversion factors. In: Marcelli, M (ed) Oceanography. Intech, Rijeka, pp 297–320

    Google Scholar 

  • Domiciano IG, Domit C, Bracarense APFRL (2017) The Green turtle Chelonia mydas as a marine and coastal environmental sentinels: anthropogenic activities and diseases. Semina 38: 3417–3434

    Google Scholar 

  • Domiciano IG, Domit C, Broadhurst MK, Koch MS, Bracarense APFRL (2016) Assessing disease and mortality among small cetaceans stranded at a World Heritage Site in southern Brazil. PloS ONE 11: e0149295.1– e0149295.17

    Article  CAS  Google Scholar 

  • Doweiko JP, Nompleggi DJ (1991) The role of albumin in human physiology and pathophysiology, Part III: albumin and disease state. Journal of Parenteral and Enteral Nutrition 15: 476–483

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1985) Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, 39: 783-791

    Article  PubMed  Google Scholar 

  • Flint M, Morton JM, Limpus CJ, Patterson-Kane JC, Murray PJ, Mills PC (2009) Development and application of biochemical and haematological reference intervals to identify unhealthy green sea turtles (Chelonia mydas). The Veterinary Journal 185: 299–304

    Article  PubMed  Google Scholar 

  • Foley AM, Schroeder BA, Redlow AE, Fick-Child K, Teas WG (2005) Fibropapillomatosis in stranded green turtles (Chelonia mydas) from the eastern United States (1980–98): trends and association with environmental factors. Journal of Wildlife Disease 41: 29–41

    Article  Google Scholar 

  • Gama LR, Domit C, Broadhurst MK, Fuentes MPB, Millar RB (2016) Green turtle Chelonia mydas foraging ecology at 25°S in the western Atlantic: evidence to support a feeding model driving by intrinsic and extrinsic variability. Marine Ecology Progress Series 542: 209–219

    Article  CAS  Google Scholar 

  • Goldwasser P, Feldman J (1997) Association of serum albumin and mortality risk. Journal of Clinical Epidemiology 50: 693–703

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt RJ, Work TM, Dutton P, Sutton C, Spraker TR, Casey RN, Diez CE, Parker, D, St. Leger J, Balazs GH, Casey JW (2005) Geographic variation in marine turtle fibropapillomatosis. Journal of Zoo and Wildlife Medicine 36: 527–530

    Article  PubMed  Google Scholar 

  • Hamann M, Schäuble CS, Simon T, Evans S (2006) Demographic and health parameters of green sea turtle Chelonia mydas foraging in the Gulf of Carpentaria, Australia. Endangered Species Research 2: 81–88.

    Article  Google Scholar 

  • Hasbún CR, Lawrence AJ, Naldo J, Samour JH, Al-Ghais SM (1998) Normal blood chemistry of free-living green sea turtles, Chelonia mydas, from the United Arab Emirates. Comparative Haematology International 8: 174–177

    Article  Google Scholar 

  • Herbst L, Ene A, Su M, Desalle R, Lenz J (2004) Tumor outbreaks in marine turtles are not due to recent herpesvirus mutation. Current Biology 14: 697–699

    Article  CAS  Google Scholar 

  • Herbst LH, Jacobson ER (2003) Practical approaches for studying sea turtle health and disease. In: The Biology of Sea Turtles, Volume II, Lutz PL, Musick JA, Wyneken J (editors), Florida: CRC press, 385–410

    Google Scholar 

  • Herbst LH, Jacobson ER, Klein PA, Balazs GH, Moretti R, Brown T, Sundberg JP (1999) Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of green turtles (Chelonia mydas). Veterinary Pathology 36: 551–564

    Article  CAS  PubMed  Google Scholar 

  • IUCN (2018) The International Union for Conservation of Nature Red List of Threatened Species. Version 2017-1 (cited in 07 March 2018). Available from: http://www.iucnredlist.org/

  • Jones K, Ariel E, Burgess G, Read M (2016) A review of fibropapillomatosis in green turtles (Chelonia mydas). Veterinary Journal 212: 48–57

    Article  CAS  PubMed  Google Scholar 

  • Kage-Karjian A, Norton TM, Krimer P, Groner M, Nelson SE, Gottdenker NL (2014) Factors influencing survivorship of rehabilitating green sea turtles (Chelonia mydas) with fibropapillomatosis. Journal of Zoo and Wildlife Medicine 45: 507–519

    Article  Google Scholar 

  • Keller JM, Balazs GH, Nielsen F, Rice M, Work TM, Jensen BA (2014) Investigating the potential role of persistent organic pollutants in Hawaiian green sea turtle fibropapillomatosis. Environmental Science & Technology 48: 7807–7816

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrada-Martagón V, Mendéz-Rodríguez LC, Gardner SC, Cruz-Escalona VH, Zenteno-Savín T (2010) Health indices of the green turtle (Chelonia mydas) along the Pacific coast of Baja California Sur, Mexico. II. Body condition index. Chelonian Conservation Biology 9: 173–183

    Article  Google Scholar 

  • Lewbart GA, Hirschfeld M, Denkinger J, Vasco K, Guevara N, García J, Muñoz J, Lohmann KJ (2014) Blood gases, biochemistry, and hematology of Galapagos green turtle (Chlonia mydas). PloS ONE 9: e96487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • March DT, Vinette-Herrin K, Peters A, Ariel E, Blyde D, Hayward D, Christidis L, Kelaher BP (2018) Hematological and biochemical characteristics of stranded green sea turtles. Journal of Veterinary Diagnostic Investigation 30: 423–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Masat RJ, Dessauer HC (1968). Plasma albumin in reptiles. Comparative Biochemistry and Physiology 25: 119–122

    Article  CAS  PubMed  Google Scholar 

  • Monezi TA, Mehnert DU, Moura EMM, Muller NMG, Garrafa P, Matushima ER, Werneck MR, Borella MI (2016). Chelonid herpesvirus 5 in secretions and tumor tissues from Green turtles (Chelonia mydas) from Southeastern Brazil: a ten-year study. Veterinary Microbiology 186: 150–156

    Article  PubMed  Google Scholar 

  • Morrison CL, Iwanowicz L, Work TM, Fahsbender E, Breitbart M, Adams C, Iwanowicz D, Sanders L, Ackermann M, Cornman RS (2018) Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis. PeerJ 6: e4386. Doi: 10.7717/peerj.4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naro-Maciel E, Le M, FitzSimmons N, Amato G (2008) Evolutionary relationships of marine turtles: A molecular phylogeny based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 49: 659–662

    Article  CAS  PubMed  Google Scholar 

  • Page-Karjian A, Rivera S, Torres F, Diez C, Moore D, van Dam R, Brown C (2015) Baseline blood values for healthy free-ranging green sea turtles (Chelonia mydas) in Puerto Rico. Comparative Clinical Pathology 24: 567–573

    Article  CAS  Google Scholar 

  • Patrício AR, Herbst LH, Duarte A, Vélez-Zuazo X, Loureiro NS, Pereira N, Tavares L, Toranzos GA (2012) Global phylogeography and evolution of chelonid fibropapilloma-associated herpesvirus. Journal of General Virology 93: 1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Proietti MC, Reisser JW, Kinas PG (2007) Avaliação preliminar da ocorrência de fibropapilomatose em tartarugas-verde (Chelonia mydas) incidentes na Reserva Biológica Marinha do Arvoredo. In Proceedings of the 12nd Congresso Latino-Americano de Ciências do Mar (COLACMAR)’, (AOCEANO: Florianópolis), pp 1–3

  • Quackenbush SL, Casey RN, Murcek RJ, Paul TA, Work TM, Limpus CJ, Chaves A, duToit L, Perez JV, Aguirre AA, Spraker TR, Horrocks JA, Vermeer LA, Balasz GH, Casey JW (2001) Quantitative analysis of herpesvirus sequences from normal tissue and fibropapillomas of marine turtles with real-time PCR. Virology 287: 105–111

    Article  CAS  PubMed  Google Scholar 

  • Ramirez AC (2017) Investigation into Chelonid Alphaherpesvirus 5 infection and fibropapillomatosis in the Pacific green turtle (Chelonia mydas agassizii) and the olive Ridley turtle (Lepidochelys olivacea) in the Pacific of Costa Rica and Nicaragua. Dissertation at Faculties of Veterinary Medicine and Medicine of the Justus Liebig University Giessen.

  • Rodenbusch CR, Baptistotte C, Werneck MR, Pires TT, Melo MTD, Ataíde MW, Reis KDHL, Testa P, Alieve MM, Canal CW (2014) Fibropapillomatosis in green turtles Chelonia mydas in Brazil: characteristics of tumors and virus. Diseases of Aquatic Organisms 11: 207–217

    Article  CAS  Google Scholar 

  • Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425

    CAS  PubMed  Google Scholar 

  • Santos MRD, Martins AS, Baptistotte C, Work TM (2015) Health condition of juvenile green turtles in southeastern Brazil. Diseases of Aquatic Organisms 115: 193–201

    Article  Google Scholar 

  • Santos RG, Martins AS, Torezani E, Baptistotte C, Farias JN, Horta PA, Work TM, Balazs GH (2010) Relationship between fibropapillomatosis and environmental quality: a case study with Chelonia mydas off Brazil. Diseases of Aquatic Organisms 89: 87–95

    Article  PubMed  Google Scholar 

  • Spotila JR (2004) Sea turtles: a complete guide to their biology, behavior, and conservation. 1st ed. Baltimore: The Johns Hopkins University Press and Oakwood Arts

    Google Scholar 

  • Stacy NI, Allemann AR, Sayler KA (2011) Diagnostic hematology of reptiles. Clinics in Laboratory Medicine 31: 87–108

    Article  PubMed  Google Scholar 

  • Stacy NI, Boylan S (2014) Clinical pathology of sea turtles. http://www.seaturtleguardian.org/clinical-pathology-of-sea-turtles. Accessed July 4, 2018

  • Swimmer JY (2000) Biochemical responses to fibropapillomatosis and captivity in the green turtle. Journal of Wildlife Disease 36: 102–110

    Article  CAS  Google Scholar 

  • Tagliolatto AB, Guimarães SM, Lobo-Hajdu G, Monteiro-Neto C (2016) Characterization of fibropapillomatosis in green turtles Chelonia mydas (Cheloniidae) captured in a foraging area in southeastern Brazil. Diseases of Aquatic Organisms 121: 233–240

    Article  PubMed  Google Scholar 

  • Tonyushkina K, Nichols JA (2009) Glucose meters: a review of technical challenges to obtaining accurate results. Journal of Diabetes Science and Technology 3: 971–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Torezani E, Baptistotte C, Mendes SL, Barata PCR (2010) Juvenile green turtles (Chelonia mydas) in the effluent discharge channel of a steel plant, Espírito Santo, Brasil, 2000-2006. Journal of the Marine Biological Association of United Kingdom 90: 233–246

    Article  Google Scholar 

  • Whiting SD, Guinea ML, Limpus CL, Fomiatti K (2007) Blood chemistry reference values for two ecologically distinct populations of foraging green turtles, eastern Indian Ocean. Comparative Clinical Pathology 16: 109–118

    Article  CAS  Google Scholar 

  • Whyte MP, Walkenhorst DA, Fedde KN, Henthorn PS, Hill C (1996) Hypophosphatasia: levels of bone alkaline phosphatase immunoreactivity in serum reflect disease severity. The Journal of Clinical Endocrinology & Metabolism 81: 2142–2148

    CAS  Google Scholar 

  • Work TM, Balazs GH (1999) Relating tumor score to hematology in green turtles with fibropapillomatosis in Hawaii. Journal of Wildlife Diseases 35:804–807

    Article  CAS  PubMed  Google Scholar 

  • Work TM, Balazs GH, Rameyer RA, Morris RA (2004) Retrospective pathology survey of green turtles Chelonia mydas with fibropapillomatosis in the Hawaiian islands, 1993-2003. Diseases of Aquatic Organisms 62: 163–176

    Article  PubMed  Google Scholar 

  • Work TM, Dagenais J, Balazs GH, Schettle N, Ackermann M (2015) Dynamics of virus shedding and in situ confirmation of Chelonid herpesvirus 5 in Hawaiian green turtles with fibropapillomatosis. Veterinary Pathology 52: 1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Zwarg T, Rossi S, Sanches TC, Cesar MO, Werneck MR, Matushima ER (2014) Hematological and histopathological evaluation of wildlife green turtles (Chelonia mydas) with and without fibropapilloma from the north coast of São Paulo state, Brazil. Pesquisa Veterinária Brasileira 34: 682–688

    Article  Google Scholar 

Download references

Acknowledgements

We thank the research team from LEC/UFPR, Associação MarBrasil, Fundação Pró-Tamar, Karumbe, especially Daniel Gonzalez, Gabriela Velez-Rubio, Gustavo Martinez Souza and Ignacio Bruno, for their assistance with C. mydas sampling, and Alcides Branco, Daniela Nóbrega and Giovana Balarin for laboratory assistance. Dr. Thierry Work is thanked for reviewing an earlier draft of the paper and for his helpful discussions.

Funding

This study was funded by Petrobras (REBIMAR), Fundação Araucária/ Fundação Grupo Boticário (Projeto ProTartas), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grant (99999.005563/2014-03) and Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico grant (302816/2014-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula F. R. L. Bracarense.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domiciano, I.G., Broadhurst, M.K., Domit, C. et al. Chelonid Alphaherpesvirus 5 DNA in Fibropapillomatosis-Affected Chelonia mydas. EcoHealth 16, 248–259 (2019). https://doi.org/10.1007/s10393-019-01412-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-019-01412-8

Keywords

Navigation