Skip to main content
Log in

Analysis and measurements of mixing in pressure-driven microchannel flow

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The mixing phenomena for two fluid streams in pressure-driven rectangular microchannels are analyzed and directly compared with the measurements of mixing intensity for a wide range of aspect ratio (width/depth = 1–20). In the analysis, the three-dimensional transport equation for species mixing was solved using the spectral method in a dimensionless fashion covering a large regime of the normalized downstream distance. The analysis reveals the details of non-uniform mixing process, which originates from the top and bottom walls of the channel and stretches out toward the center of the channel, and its transition to uniformity. Employing different length scales for the non-uniform and uniform mixing regimes, the growth of mixing intensity can be expressed in a simple relationship for various aspect ratios in the large range. The mixing experiments were carried out on silicon- and poly(methyl methacrylate) (PMMA)-based T-type micromixers utilizing fluids of pH indicator (in silicon channel) and fluorescent dye (in PMMA channel) to evaluate the mixing intensity based on flow visualization images. Using conventional microscopes, the experiments demonstrate the mixing intensity as a power law of the stream velocity for all the microfluidic channels tested. The variations of measured mixing intensity with the normalized downstream distance are found in favorable agreement with the numerical simulations. The comparison between the experiments and simulations tells the capabilities and limitations on the use of conventional microscopes to measure the mixing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bird R, Stewart W, Lightfoot E (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  • Bottausci F, Mezic I, Meinhart CD, Cardonne C (2004) Mixing in the shear superposition micromixer: three-dimensional analysis. Philos Trans R Soc Lond A Math Phys Eng Sci 362:1001–1018

    Article  MathSciNet  Google Scholar 

  • Branebjerg J, Gravesen P, Krog JP, Nielsen CR (1996) Fast mixing by lamination. In: Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), San Diego, USA, pp 441–446

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Chen Z, Gao Y, Su R, Li C, Lin J-M (2003) Fabrication and characterization of poly(methyl methacrylate) microchannel by in-situ polymerization method with novel metal template. Electrophoresis 24:3246–3252

    Article  Google Scholar 

  • Deval J, Tabeling P, Ho C-M (2002) A dielectrophoretic chaotic mixer. In: Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, USA, pp 36–39

  • Gobby D, Angeli P, Gavriidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126–132

    Article  Google Scholar 

  • Gottlieb D, Orszag SA (1997) Numerical analysis of spectral methods: theory and applications. SIAM, Philadelphia

    Google Scholar 

  • Horng R-H, Han P, Chen H-Y, Lin K-W, Tsai T-M, Zen J-M (2005) PMMA-based capillary electrophoresis electrochemical detection microchip fabrication. J Micromech Microeng 15:6–10

    Article  Google Scholar 

  • Ismagilov RF, Stroock AD, Kenis PJA and Whitesides GM, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376–2378

    Article  Google Scholar 

  • Kamholz AE, Yager P (2001) Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys J 80:155–160

    Article  Google Scholar 

  • Lee Y-K, Deval J, Tabeling P, Ho C-M (2001) Chaotic mixing in electrokinetically and pressure driven micro flows. In: Proceedings of the IEEE micro electro mechanical systems (MEMS), Interlaken, Switzerland, pp 483–486

  • Lide DR (1994) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–197

    Article  Google Scholar 

  • Lu R, Ryu K, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11:462–469

    Article  Google Scholar 

  • Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  • Okkels F, Tabeling P (2004) Spatiotemporal resonances in mixing of open fluids. Phys Rev Lett 92(3):038301-1-4

    Google Scholar 

  • Qu W, Mala GM, Li D (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364

    Article  MATH  Google Scholar 

  • Senturia SD (2001) Microsystem design. Kluwer, Boston

    Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  Google Scholar 

  • Trefethen L (2000) Spectral methods in Matlab. SIAM, Philadelphia

    MATH  Google Scholar 

  • White FM (1974) Viscous fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  • Wu Z, Nguyen N-T, Huang X (2004) Nonlinear diffusive mixing in microchannels: theory and experiments. J Micromech Microeng 14:604–611

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support for this study from the National Science Council of Taiwan under Contract Number NSC 92-2212-E005-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry M. Chen.

Appendices

Appendix 1: Discretization with the Chebyshev polynomials

The concentration C(ξ, η, Z*) is approximated by a truncated double series of Chebyshev polynomials as

$$C(\xi, \eta, Z^{ * })\,=\,{\sum\limits_{m\,=\,0}^M {{\sum\limits_{n\,=\,0}^N {C_{{mn}} (Z^{ * })T_{m} } }} }(\xi)T_{n} (\eta),$$
(19)

where T m (ξ) and T n (η) denote the Chebyshev polynomials and C mn the expansion coefficient. By choosing the Chebyshev Gauss-Lobato collocation points

$$\xi _{i}\,=\,\cos \frac{{i\pi }}{M},\quad \eta _{j}\,=\,\cos \frac{{j\pi }}{N},\qquad i\,=\,0,1, \ldots, M,{\enspace}j\,=\,0,1, \ldots, N,$$
(20)

we can form the following discrete transform/inverse transform

$$C_{{mn}} (Z^{ * })\,=\,\frac{4}{{d_{i} d_{m} e_{j} e_{n} MN}}{\sum\limits_{i\,=\,0}^M {{\sum\limits_{j\,=\,0}^N {C(\xi _{i}, \eta _{j}, Z^{ * })T_{m}} }} } (\xi _{i})T_{n} (\eta _{j}),$$
(21a)
$$C(\xi _{i}, \eta _{j}, Z^{ * })\,=\,{\sum\limits_{m\,=\,0}^M {{\sum\limits_{n\,=\,0}^N {C_{{mn}} (Z^{ * })T_{m}} }} } (\xi _{i})T_{n} (\eta _{j}),$$
(21b)

where \(d_{l}\,=\,\left\{ {\begin{array}{*{20}c} {{2},} & {{l\,=\,0,M},} \\ {{1},} & {{l\,=\,{\hbox{otherwise},}}} \\ \end{array} } \right.\) and \(e_{l}\,=\,\left\{ {\begin{array}{*{20}c} {{2},} & {{l\,=\,0,N},} \\ {{1},} & {{l\,=\,{\hbox{otherwise}}.}} \\ \end{array} } \right.\) This means that the truncated double series in Eqs.  21a, 21b will interpolate C(ξ, η, Z*) at the collocation points \({\left({\xi _{i}, \eta _{j} } \right)},\;i\,=\,0,1, \ldots, M,j\,=\,0,1, \ldots, N.\) Substituting Eqs.  21a, 21b into Eq. 19, C(ξ, η, Z*) can be further expressed as

$$C(\xi, \eta, Z^{ * })\,=\,{\sum\limits_{i\,=\,0}^M {{\sum\limits_{j\,=\,0}^N {C(\xi _{i}, \eta _{j}, Z^{ * })\phi _{i} (\xi)\varphi _{j} (\eta)} }}, }$$
(22a)

where \(\phi _{i} (\xi){\text{ and }}\varphi _{j} (\eta)\) are the Lagrange interpolating polynomials defined as

$$\phi _{i} (\xi)\,=\,{\mathop \Pi \limits_{{\begin{subarray}{ll} l\,=\,0,\\ l\,\ne\,i\end{subarray}}}^M }\frac{{\xi - \xi _{l} }}{{\xi _{i} - \xi _{l} }},$$
(22b)
$$\varphi _{j} (\eta)\,=\,{\mathop \Pi \limits_{\begin{subarray}{ll} l = 0, \\ l \,\ne\, j \end{subarray}} ^N }\frac{{\eta - \eta _{l} }}{{\eta _{j} - \eta _{l} }}.$$
(22c)

The derivatives

$$\frac{{\partial C}}{{\partial \xi }}{\left({\xi _{i}, \eta _{j}, Z^{ * } } \right)},\,\frac{{\partial ^{2} C}}{{\partial \xi ^{2} }}{\left( {\xi _{i}, \eta _{j}, Z^{ * } }\right)},\,\frac{{\partial C}}{{\partial \eta }}{\left({\xi _{i}, \eta _{j}, Z^{ * } } \right)},$$

and

$$\frac{{\partial ^{2} C}}{{\partial \eta ^{2} }}{\left({\xi _{i}, \eta_{j}, Z^{ * } } \right)}$$

can be obtained as

$$\frac{{\partial C}}{{\partial \xi }}{\left({\xi _{i}, \eta _{j}, Z^{ * } } \right)}\,=\,{\sum\limits_{m\,=\,0}^M {{\sum\limits_{n\,=\,0}^N {C(\xi _{m}, \eta _{n}, Z^{ * })\frac{{{\hbox{d}}\phi _{m} }}{{\hbox {d}}\xi }}(\xi _{i})\varphi _{n} (\eta _{j})} }}, $$
(23a)
$$\frac{{\partial ^{2} C}}{{\partial \xi ^{2} }}{\left({\xi _{i}, \eta _{j}, Z^{ * } } \right)}\,=\,{\sum\limits_{m\,=\,0}^M {{\sum\limits_{n = 0}^N {C(\xi _{m}, \eta _{n}, Z^{ * })\frac{{\hbox{d}^{2} \phi _{m} }}{{\hbox{d}\xi ^{2} }}(\xi _{i})\varphi _{n} (\eta _{j})} }}, }$$
(23b)
$$\frac{{\partial C}}{{\partial \eta }}{\left({\xi _{i}, \eta _{j}, Z^{ * } } \right)}\,=\,{\sum\limits_{m\,=\,0}^M {{\sum\limits_{n\,=\,0}^N {C(\xi _{m}, \eta _{n}, Z^{ * })\phi _{m} (\xi _{i})\frac{{\hbox{d}\varphi _{n} }}{{\hbox{d}\eta }}(\eta _{j})} }}, }$$
(23c)
$$\frac{{\partial ^{2} C}}{{\partial \eta ^{2} }}{\left({\xi _{i}, \eta _{j}, Z^{ * } } \right)}\,=\,{\sum\limits_{m\,=\,0}^M {{\sum\limits_{n = 0}^N {C(\xi _{m}, \eta _{n}, Z^{ * })\phi _{m} (\xi _{i})\frac{{\hbox{d}^{2} \varphi _{n} }}{{\hbox{d}\eta ^{2} }}(\eta _{j})} }}, }$$
(23d)

where \(\left[{{d\phi _{m} }}{\left({\xi _{i} } \right)}/{{d\xi }}\right]\,{\hbox{ and }}\,\left[{{d\varphi _{n} }}{\left({\eta _{j} } \right)}/{{d\eta }}\right]\) are usually denoted as the Chebyshev collocation derivative matrices formulated as

$${\left({{\mathbf{D}}_{\xi } } \right)}_{{im}}\,=\,\frac{{\hbox{d}\phi _{m} }}{{\hbox{d}\xi }}{\left({\xi _{i} } \right)}\,=\,\left\{ {\begin{array}{*{20}l} {{\frac{{{\hbox {d}_{i}} (- 1)^{{i + m}} }}{{{\hbox {d}_{m}} (\xi _{i} - \xi _{m})}},} } & {{i \ne m},} \\ {{\frac{{ - \xi _{m} }}{{2(1 - \xi ^{2}_{m})}},}} & {{1 \leq i\,=\,m \leq M - 1},} \\ {{\frac{{2M^{2} + 1}}{6},}} & {{i\,=\,m\,=\,0},} \\ {{ - \frac{{2M^{2} + 1}}{6},}} & {{i\,=\,m\,=\,M},} \\ \end{array} } \right.$$
(24a)

and likewise

$${\left({{\mathbf{D}}_{{_{\eta } }} } \right)}_{{jn}} = \frac{{\hbox{d}\varphi _{n} }}{{\hbox{d}\eta }}{\left({\eta _{j} } \right)}\,=\,\left\{ {\begin{array}{*{20}l} {{\frac{{e_{j} (- 1)^{{j + n}} }}{{e_{n} (\eta _{j} - \eta _{n})}},}} & {{j \ne n}, } \\ {{\frac{{ - \eta _{n} }}{{2(1 - \eta ^{2}_{n})}},}} & {{1 \leq j\,=\,n \leq N - 1}, } \\ {{\frac{{2N^{2} + 1}}{6},} } & {{j\,=\,n\,=\,0},} \\ {{ - \frac{{2N^{2} + 1}}{6},}} & {{j\,=\,n\,=\,N}.} \\ \end{array} } \right.$$
(24b)

The second derivative collocation matrices can then be obtained as

$$\frac{{\hbox{d}^{2} \phi _{m} }}{{\hbox{d}\xi ^{2} }}{\left({\xi _{i} } \right)} = {\left({{\mathbf{D}}^{2}_{\xi } } \right)}_{{im}}, $$
(25a)
$$\frac{{\hbox{d}^{2} \varphi _{n} }}{{\hbox{d}\eta ^{2} }}{\left({\eta _{j} } \right)}\,=\,{\left({{\mathbf{D}}^{2}_{\eta } } \right)}_{{jn}}.$$
(25b)

The boundary and initial conditions associated with the discretized equation are written as

$$C(- 1,\eta _{j}, Z^{ * })\,=\,1,\quad \frac{{\partial C}}{{\partial \eta }}(\xi _{i}, \pm 1,Z^{ * })\,=\,\frac{{\partial C}}{{\partial \xi }}(1,\eta _{j}, Z^{ * })\,=\,0,\quad i\,=\,0,1, \ldots, M,{\enspace}j\,=\,0,1, \ldots, N,$$
(26a)
$$C(\xi _{i}, \eta _{j}, 0)\,=\,0,\quad i\,=\,0,1, \ldots, M,{\enspace}j\,=\,0,1, \ldots, N,$$
(26b)

The actual computations of these derivatives can be done alternatively by the transform and inverse transform in Eqs.  21a, 21b, which can speed up via FFT. The details are referred to Canuto et al. (1988) and Trefethen (2000).

Appendix 2: Rescaling the coordinates for parabolic velocity profile

For the channel with large γ, where the velocity is portrayed as a parabolic profile, Eq. 7a is rewritten as

$$\frac{3}{2}(1 - 4Y^{2})\frac{{\partial C}}{{\partial Z^{ + } }} \,=\,\frac{{\partial ^{2} C}}{{\partial \chi ^{2} }} + \frac{{\partial ^{2} C}}{{\partial Y^{2} }},$$
(27)

where the downstream distance is rescaled as Z + = γ2 Z*=Dz/(h 2 u 0), in reference to the channel depth instead of the channel width, and the dimensionless width is in the small scale χ = γ X. Notably, Eq. 27 now does not contain γ, i.e. independent of aspect ratio. Equation 27 is then solved with the same boundary conditions of Eq. 7b for the concentration C(χ, Y, Z +) and the mixing intensity can be obtained by integrating C(χ, Y, Z +) over χ from the midline (χ = 0) to the outer limit (χ = ±δ/2h) of the concentration boundary layer,

$$I_{{{\text{mix}}}} (Y,Z^{ + })\,=\,\frac{1}{\gamma }{\left[ {{\int_{\frac{{ - \delta }}{{2h}}}^0 {C^{\prime} (\chi, Y,Z^{ + })\hbox{d}\chi } } + {\int_0^{\frac{\delta }{{2h}}} {C(\chi, Y,Z^{ + })\hbox{d}\chi } }} \right]},$$
(28a)

or

$$\gamma I_{{{\text{mix}}}} (Y,Z^{ + })\,=\,{\int_{\frac{{ - \delta }}{{2h}}}^0 {C^{\prime} (\chi, Y,Z^{ + })d\chi } } + {\int_0^{\frac{\delta }{{2h}}} {C(\chi, Y,Z^{ + })\hbox{d}\chi } },$$
(28b)

where δ is taken as the dimensional width of interdiffusion region with a very small cutoff concentration (e.g. 1% or less). Then the product of I mix and γ given by Eq. 28b is independent of aspect ratio until δ becomes large enough to touch the sidewalls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.M., Horng, TL. & Tan, W.Y. Analysis and measurements of mixing in pressure-driven microchannel flow. Microfluid Nanofluid 2, 455–469 (2006). https://doi.org/10.1007/s10404-006-0092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0092-9

Keywords

Navigation