Skip to main content
Log in

Review: static and dynamic behavior of liquids inside carbon nanotubes

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This review deals with the static and dynamic behavior of liquids inside carbon nanotubes, a broad subject, which includes: the investigation of liquid entering inside the tubes, and the subsequent filling of them, the overall flow through tubes as well as the wetting of the nanotube walls. Although most of the numerical work has been done on small diameter nanotubes, due to computational limitations, a large wealth of experimental results have been obtained for larger diameter nanotubes, between 10 and 100 nm, or above. This review offers an overview of the major achievements in the field, with particular emphasis on the effect on liquid flow through them of the structure and chemistry of carbon nanotubes. The limit below which liquids confined in nanotubes will not obey classical fluid dynamics equations as well as the structure and state of liquids under confinement will also be reviewed. Finally, near-to commercialization and still-in-the-lab applications will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361:333

    Google Scholar 

  • Babu S, Ndungu P, Bradley JC, Rossi MP, Gogotsi Y (2005) Guiding water into carbon nanopipes with the aid of bipolar electrochemistry. Microfluid Nanofluid 1:284–288

    Google Scholar 

  • Bae JC, Yoon YJ, Lee S-J, Song KM, Baik HK (2002) Diameter control of single-walled carbon nanotubes by plasma rotating electrode process. Carbon 40:2905–2911

    Google Scholar 

  • Beckstein O, Sansom M (2003) Liquid–vapor oscillations of water in hydrophobic nanopores. PNAS 100:7063–7068

    Google Scholar 

  • Bhide SY, Yashonath S (2000) Structure and dynamics of benzene in one-dimensional channels. J Phys Chem B 104:11977–11986

    Google Scholar 

  • Bogomolov VN (1992) Capillary effects in ultrathin channels. Sov Phys Tech Phys 37:79–82

    Google Scholar 

  • Branca C, Frusteri F, Magazù V, Mangione A (2004) Characterization of carbon nanotubes by tem and infrared spectroscopy. J Phys Chem B 108:3469–3473

    Google Scholar 

  • Calderon Moreno JM, Swamy SS, Fujino T, Yoshimura M (2000) Carbon nanocells and nanotubes grown in hydrothermal fluids. Chem Phys Lett 329:317–322

    Google Scholar 

  • Cassell AM, Raymakers JA, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492

    Google Scholar 

  • Chen JY, Kutana A, Collier CP, Giapis KP (2005) Electrowetting in carbon nanotubes. Science 310:1480–1483

    Google Scholar 

  • Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. PNAS 104:8218–8222

    Google Scholar 

  • Ci L, Rao Z, Zhou Z, Tang DS, Yan X, Liang Y, Liu D, Yuan H, Zhou W, Wang Gea (2002) Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett 359:63–67

    Google Scholar 

  • Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Google Scholar 

  • de Gennes PG, Brochard-Wyard F, Quere D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York

    MATH  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Google Scholar 

  • Dujardin E, Ebbesen T, Hiura H, Tanigaki K (1994) Capillarity and wetting of carbon nanotubes. Science 265:1850

    Google Scholar 

  • Dujardin E, Ebbesen TW, A.Krishnan, Treacy MMJ (1998) Wetting of single shell carbon nanotubes. Adv Mater 10:1472–1475

    Google Scholar 

  • Ebbesen T (1996) Wetting, filling and decorating carbon nanotubes. J Phys Chem Solids 57:951–955

    Google Scholar 

  • Fan R, Karnik R, Yue M, Li D, Majundar A, Yang P (2005) DNA translocation in Inorganic nanotubes. Nano Lett 5:1633–1637

    Google Scholar 

  • Fowkes FK (1964) Attractive forces at interfaces. Ind Eng Chem 56:40

    Google Scholar 

  • Fowkes FM (1964) In: Fowkes FM (ed) Contact angle, wettability, and adhesion. vol. 43. American Chemical Society Los Angeles, CA, pp 99–111

    Google Scholar 

  • Fowkes FM, Harkins WD (1940) The state of monolayers adsorbed at the interface solid-aqueous solution. J Am Chem Soc 62:3377

    Google Scholar 

  • Freedman JR, Mattia D, Korneva G, Gogotsi Y, Friedman G, Fontecchio AK (2007) Magnetic assembly of carbon nanotube tipped pipettes. Appl Phys Lett 90:103108

    Google Scholar 

  • Gao H, Kong Y, Cui D, Ozkan C (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473

    Google Scholar 

  • Gogotsi Y, ed (2006) Nanotubes and nanofibers. CRC Press, Boca Raton

  • Gogotsi Y, Libera JA, Yoshimura M (2000) Hydrothermal synthesis of multiwall carbon nanotubes. J Mater Res 15:2591–2594

    Google Scholar 

  • Gogotsi Y, Libera JA, Yazicioglu AG, Megaridis CM (2001) In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett 79:1021–1023

    Google Scholar 

  • Gogotsi Y, Naguib N, Libera JA (2002) In situ chemical experiments in carbon nanotubes. Chem Phys Lett 365:354–360

    Google Scholar 

  • Granick S (1991) Motions and relaxations of confined liquids. Science 253:1374–1379

    Google Scholar 

  • Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 296:195–202

    Google Scholar 

  • Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Google Scholar 

  • Hattori Y, Watanabe Y, Kawasaki S, Okino F, Pradhan BK, Kyotani T, Tomita A, Touhara H (1999) Carbon-alloying of the rear surfaces of nanotubes by direct fluorination. Carbon 37:1033–1038

    Google Scholar 

  • Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Google Scholar 

  • Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Google Scholar 

  • Hutchison JL, Kiselev NA, Krinichnay EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39:761–770

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  • Insepov Z, Wolf D, Hassanein A (2006) Nanopumping using carbon nanotubes. Nano Lett 6:1893–95

    Google Scholar 

  • Irving DL, Sinnott SB, Lindner AS (2004) Interaction of functionalized benzene molecules with carbon nanopores. Chem Phys Lett 389:96–100

    Google Scholar 

  • Jiang J, Sandler SI, Smit B (2004) Capillary phase transitions of n-alkanes in a carbon nanotube. Nano Lett 4:241–244

    Google Scholar 

  • Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8:452–458

    Google Scholar 

  • Jung DH, Ko YK, Jung HT (2004) Aggregation behavior of chemically attached PEG to SWNTs ropes. Mater Sci Eng C 117–121

  • Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotubes membranes. PNAS 100:10175–10180

    Google Scholar 

  • Kang Z, Wang E, Gao L, Lian S, Jiang M, Hu C, Xu L (2003) One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite. J Am Chem Soc 125:13652–13653

    Google Scholar 

  • Kim BM, Sinha S, Bau HH (2004) Optical microscope study of liquid transport in carbon nanotubes. Nano Lett 4:2203–2208

    Google Scholar 

  • Kim BM, Qian S, Bau HH (2005) Filling carbon nanotubes with particles. Nano Lett 5:873–78

    Google Scholar 

  • Koga K, Tanaka H, Zeng XC (2000) First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature 408:564–567

    Google Scholar 

  • Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotbes inside carbon nanotubes. Nature 412:802–805

    Google Scholar 

  • Koga K, Gao GT, Tanakac H, Zeng XC (2002) How does water freeze inside carbon nanotubes? Physica A 314:462–469

    Google Scholar 

  • Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley JC, Kornev KG (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5:879–884

    Google Scholar 

  • Kotsalis EM, Walther JH, Koumoutsakos P (2004) Multiphase water flow inside carbon nanotubes. Int J Multiph Flow 30:995–1010

    MATH  Google Scholar 

  • Kouklin NA, Kim WE, Lazareck AD, Xu JM (2005) Carbon nanotube probes for single-cell experimentation and assays. Appl Phys Lett 87:173901

    Google Scholar 

  • Kuznetsov VL, Usoltseva AN, Chuvilin AL, Obraztsova ED, Bonard J-M (2001) Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Phys Rev B 64:235401–235407

    Google Scholar 

  • Kyotani T, Tsai LF, Tomita A (1995) Formation of ultrafine carbon tubes by using an anodic aluminum-oxide film as a template. Chem Mater 7:1427–1428

    Google Scholar 

  • Kyotani T, Tsai L, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8:2109–2113

    Google Scholar 

  • Kyotani T, Chmiola J, Gogotsi Y (2008) Carbide derived carbon and templated carbons. In: Frackowiak F.B.a.E (ed) Carbons and composites for electrochemical energy storage systems, CRC Press Taylor and Francis

  • Lee Y, Martin CD, Parise JB, Hriljac JA, Vogt T (2004) Formation and manipulation of confined water wires. Nano Lett 4:619–621

    Google Scholar 

  • Leo JMD, Maragnon J (2003) Confined water in nanotube. J Mol Struct (Theochem) 623:159–166

    Google Scholar 

  • Libera JA, Gogotsi Y (2001) Hydrothermal synthesis of graphite tubes using ni catalyst. Carbon 39:1307–1308

    Google Scholar 

  • Longhurst MJ, Quirke N (2007) Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano Lett 7:3324–3328

    Google Scholar 

  • Lum K, Chandler D, Weeks JD (1999) Hydrophobicity at small and large length scales. J Phys Chem B 103:4570–4577

    Google Scholar 

  • Madou MJ (2002) Fundamentals of microfabrication. CRC Press, Boca Raton

    Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005a) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44

    Google Scholar 

  • Majumder M, Chopra N, Hinds BJ (2005b) Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J Am Chem Soc 127:9062–9070

    Google Scholar 

  • Maniwa Y, Kataura H, Abe M, Suzuki S, Achiba Y, Kira H, Matsuda K (2002) Phase transition in confined water inside carbon nanotubes. J Phys Soc of Jpn 71:2863–2866

    Google Scholar 

  • Marti J, Gordillo MC (2001a) Effects of confinement on the vibrational spectra of liquid water adsorbed in carbon nanotubes. Physical Review B 63:165430_1

    Google Scholar 

  • Marti J, Gordillo MC (2001b) Time-dependent properties of liquid water isotopes adsorbed in carbon nanotubes. J Chem Phys 114:10486–10492

    Google Scholar 

  • Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966

    Google Scholar 

  • Mattia D (2007) Templated growth and characterization of carbon nanotubes for nanofluidic applications. PhD Thesis, Drexel University, http://dspace.library.drexel.edu/bitstream/1860/1772/1/Mattia_Davide.pdf

  • Mattia D, Bau HH, Gogotsi Y (2006a) Wetting of CVD carbon films by polar and non-polar liquids and implications for carbon nanopipes. Langmuir 22:1789–1794

    Google Scholar 

  • Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006b) Effect of graphitization on the wettability and electrical conductivity of CVD carbon nanotubes and films. J Phys Chem B 110:9850–55

    Google Scholar 

  • Mattia D, Korneva G, Sabur A, Friedman G, Gogotsi Y (2007a) Multifunctional carbon nanotubes with nanoparticles embedded in their walls. Nanotechnology 18:155305

    Google Scholar 

  • Mattia D, Rossi MP, Ye H, Gogotsi Y (2007b) In 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics; WSEAS, Athens, Greece, p 294–296

  • Megaridis CM, Yazicioglu AG, Libera JA, Gogotsi Y (2002) Attoliter fluid experiments in individual closed-end carbon nanotubes: liquid film and fluid interface dynamics. Phys Fluids 14:L5–L8

    Google Scholar 

  • Mittal J, Monthioux M, Allouche H, Stephan O (2001) Room temperature filling of single wall carbon nanotubes with chromium oxide in open air. Chem Phys Lett 339:311–318

    Google Scholar 

  • Monthioux M (2002) Filling single-wall carbon nanotubes—Review. Carbon 40:1809–1823

    Google Scholar 

  • Morcos I (1970) On contact angle and dispersion energy of the cleavage graphite/water system. J Colloid Interface Sci 34:469–471

    Google Scholar 

  • Morcos I (1972) Surface tension of stressed-annealed pyrolitic graphite. J Chem Phys 57:1801

    Google Scholar 

  • Mugele F, Klingner A, Buehrle J, Steinhauser D, Herminghaus S (2005) Electrowetting: a convenient way to switchable wettability patterns. J Phys Condens Matter 17:S559–S576

    Google Scholar 

  • Naguib N, Ye H, Gogotsi Y, Yazicioglu AG, Megaridis CM, Yoshimura M (2004) Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett 4:2237–2243

    Google Scholar 

  • Noon WH, Ausman KD, Smalley RE, Ma J (2002) Helical ice-sheets inside carbon nanotubes in the physiological condition. Chem Phys Lett 355:445–448

    Google Scholar 

  • Noy A, Park HG, Fornasiero F, Holt JK, Grigoropoulos CP, Bakajin O (2007) Nanofluidics in carbon nanotubes. Nanotoday 2:22–29

    Google Scholar 

  • Ogarev VA (1978) Wettability of the surfaces of graphite and vitrified carbon. Colloidal J USSR 40:153–156

    Google Scholar 

  • Orikasa H, Inokuma N, Okubo S, Kitakami O, Kyotani T (2006) Template synthesis of water-dispersible carbon nano “test tubes” without any post-treatment. Chem Mater 18:1036–1040

    Google Scholar 

  • Ostrovskaya LY, Perevertailo VM, Matveeva LA, Milani P, Ralchenko VG, Shpilevsky EM (2003) Characterization of different carbon nanomaterials promising for biomedical and sensor applications by the wetting method. Powder Metall Met Ceram 42:1–8

    Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Google Scholar 

  • Perevertailo VM, Loginova OB, Aslanova OI (2003) Wetting of solids of various physicochemical nature with water solutions. J Superhard Mater 25:39–44

    Google Scholar 

  • Pierson HO (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes, Park Ridge

    Google Scholar 

  • Pierson HO (1999) Handbook of chemical vapor deposition (CVD). Noyes Publications, Park Ridge

    Google Scholar 

  • Rakov EG (2006) Chemistry of carbon nanotubes. In: Gogotsi Y (eds) Nanomaterials handbook, CRC Press, Boca Raton

    Google Scholar 

  • Rivera JL, McCabe C, Cummings PT (2002) Layering behavior and axial phase equilibria of pure water and water + carbon dioxide inside single wall carbon nanotubes. Nano Lett 2:1427–1431

    Google Scholar 

  • Rossi MP, Gogotsi Y (2004) Environmental SEM studies of nanofiber-liquid interactions. Microsc Anal 18:9–11

    Google Scholar 

  • Rossi MP, Ye H, Gogotsi Y (2004a) In ASME Heat Transfer/Fluid Engineering Summer Conference Charlotte, USA

  • Rossi MP, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley JC (2004b) Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett 4:989–993

    Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College, London

    Google Scholar 

  • Schrader ME (1975) Ultrahigh vacuum techniques in the measurement of contact angles. IV. Water on graphite (0001). J Phys Chem 79:2508

    Google Scholar 

  • Schrader ME (1980) Ultrahigh-vacuum techniques in the measurement of contact angles. V. LEED study of the effect of structure on the wettability of graphite. J Phys Chem 84:2774–2779

    Google Scholar 

  • Schrlau MG, Falls EM, Ziober BL, Bau HH (2008) Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 015101

  • Shafrin EG, Zisman WA (1960) Constitutive relations on the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J Phys Chem 64:519–524

    Google Scholar 

  • Sinha S, Rossi MP, Mattia D, Gogotsi Y, Bau HH (2007) Induction and measurement of minute flow rates through nanopipes. Phys Fluids 19:013603–013608

    Google Scholar 

  • Sloan J, Kirkland A, Hutchison JL, Green MLH (2003) Aspects of crystal growth within carbon nanotubes. C R Phys 4:1063–1074

    Google Scholar 

  • Striolo A (2006) The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett 6:633–639

    Google Scholar 

  • Su M, Zheng B, Liu J (2000) A scalable CVD method for the synthesis of single walled carbon nanotubes with high catalyst productivity. Chem Phys Lett 322:321–326

    Google Scholar 

  • Supple S, Quirke N (2003) Rapid imbibition of fluids in carbon nanotubes. Phys Rev Lett 90:214501

    Google Scholar 

  • Supple S, Quirke N (2004) Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes. J Chem Phys 121:8571–8579

    Google Scholar 

  • Tabeling P (2005) Introduction to microfluidics. Oxford University Press, Oxford

    Google Scholar 

  • Tas NR, Mela P, Kramer T, Berenschot JW, van den Berg A (2003) Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett 3:1537–1540

    Google Scholar 

  • Taushkanova OG, Smirnov EP, Novozhenets AA (1993) Adsorption and contact angle of wetting the carbon materials by water. Zhurnal Fizicheskoj Khimii 67:472

    Google Scholar 

  • Tolman RC (1949a) The effect of droplet size on surface tension. J Chem Phys 17:333–337

    Google Scholar 

  • Tolman RC (1949b) The superficial density of matter at a liquid-vapor boundary. J Chem Phys 17:118–127

    Google Scholar 

  • Ugarte D, Stöckli T, Bonard JM, Chatelain A, Heer WAd (1998) Filling carbon nanotubes. Appl Phys A 67:101–105

    Google Scholar 

  • Van Oss CJ (2002) Use of the combined lifshitz-van der waals and lewis acid-base approaches in determining the apolar and polar contributions to surface and interfacial tensions and free energies. J Adhes Sci Technol 16:669–677

    Google Scholar 

  • Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941

    Google Scholar 

  • Van Oss CJ, Giese RF, Good RJ (1990) Reevaluation of the surface tension components and parameters of polyacetylene from contact angles of liquids. Langmuir 6:1711–1713

    Google Scholar 

  • Van Oss CJ, Giese RF, Wu W (1998) On the degree to which the contact angle is affected by the adsorption onto a solid surface of vapor molecules originating from the liquid drop. J Dispers Sci Technol 19:1221–1236

    Google Scholar 

  • Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2001) Carbon nanotubes in water: structural characteristics and energetics. J Phys Chem B 105:9980–9987

    Google Scholar 

  • Walther JH, Werder T, Jaffe RL, Gonnet P, Bergdorf M, Zimmerli U, Koumoutsakos P (2004) Water-carbon interactions III: The influence of surface and fluid impurities. Phys Chem Chem Phys 6:1988–1995

    Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Google Scholar 

  • Werder T, Walther JH, Jaffe RL, Halicioglu T, Noca F, Koumoutsakos P (2001) Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett 1:697–702

    Google Scholar 

  • Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107:1345–1352

    Google Scholar 

  • Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol 2:87–94

    Google Scholar 

  • Xu C, Sloan J, Brown G, Bailey SR, Williams VC, Friedrichs S, Coleman KS, Flahaut E, Hutchison JL, Dunin-Borkowski RE, Green MLH (2000) 1D Lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem Commun 2427–28

  • Yan AH, Xiao XC, Kulaots I, Sheldon BW, Hurt RH (2006) Controlling water contact angle on carbon surfaces from 5 degrees to 167 degrees. Carbon 44:3116–3120

    Google Scholar 

  • Yarin AL, Yazicioglu AG, Megaridis CM (2005a) Thermal stimulation of aqueous volumes contained in carbon nanotubes: experiment and modeling. Appl Phys Lett 86:013109

    Google Scholar 

  • Yarin AL, Yazicioglu AG, Megaridis CM, Rossi MP, Gogotsi Y (2005b) Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. J Appl Phys 97:124309

    Google Scholar 

  • Yazicioglu AG, Megaridis CM, Gogotsi Y (2004) Evaporative transport of aqueous liquid in a closed carbon nanotube: a nano heat pipe? J Heat Transf 126:506–606

    Google Scholar 

  • Yazicioglu AG, Megaridis CM, Nicholls A, Gogotsi Y (2005) Electron microscope visualization of multiphase fluids contained in closed carbon nanotubes. J Vis 8:137–144

    Article  Google Scholar 

  • Ye H, Naguib N, Gogotsi Y (2004a) TEM study of water in carbon nanotubes. JEOL News 39:38–43

    Google Scholar 

  • Ye H, Naguib N, Gogotsi Y, Yazicioglu AG, Megaridis CM (2004b) Wall structure and surface chemistry of hydrothermal carbon nanofibers. Nanotechnology 15:232–236

    Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65

    Google Scholar 

  • Zhang F (1999) Molecular dynamics studies of chainlike molecules confined in a carbon nanotube. J Chem Phys 111:9082–9085

    Google Scholar 

  • Zhang HW, Zhang ZQ, Wang L, Zheng YG, Wang JB, Wang ZK (2007) Pressure control model for transport of liquid mercury in carbon nanotubes. Appl Phys Lett 90:144105–3

    Google Scholar 

  • Zisman WA (1964) Relation of equilibrium contact angle to liquid and solid constitution. In: Fowkes FM (eds) Contact angle, wettability, and adhesion, American Chemical Society, Washington

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NSF grant CTS-0609062 and by W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Mattia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattia, D., Gogotsi, Y. Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5, 289–305 (2008). https://doi.org/10.1007/s10404-008-0293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0293-5

Keywords

Navigation