Skip to main content
Log in

Molecular dynamics simulation of nanoscale liquid flows

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation is a powerful tool to investigate the nanoscale fluid flow. In this article, we review the methods and the applications of MD simulation in liquid flows in nanochannels. For pressure-driven flows, we focus on the fundamental research and the rationality of the model hypotheses. For electrokinetic-driven flows and the thermal-driven flows, we concentrate on the principle of generating liquid motion. The slip boundary condition is one of the marked differences between the macro- and micro-scale flows and the nanoscale flows. In this article, we review the parameters controlling the degree of boundary slip and the new findings. MD simulation is based on the Newton's second law to simulate the particles' interactions and consists of several important processing methods, such as the thermal wall model, the cut-off radius, and the initial condition. Therefore, we also reviewed the recent improvement in these key methods to make the MD simulation more rational and efficient. Finally, we summarized the important discoveries in this research field and proposed some worthwhile future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander FJ, Garcia AL (1997) The direct simulation Monte-Carlo method. Comput Simul 11:588–593

    Google Scholar 

  • Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys V72(4):2384–2393

    Google Scholar 

  • Banerjee S, Murad S, Puri IK (2007) Preferential ion and water intake using charged carbon nanotubes. Chem Phys Lett 434:292–296

    Google Scholar 

  • Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid–solid interface. Phys Rev Lett 82:4671–4674

    Google Scholar 

  • Benedict LX, Louie SG, Cohen ML (1995) Static polarizabilities of single-wall carbon nanotubes. Phys Rev B 52:8541–8549

    Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Intermolecular forces. Reidel, Dordrecht, The Netherlands, pp 331–342

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Google Scholar 

  • Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters 3:727–730

    Google Scholar 

  • Bikerman JJ (1970) Physical surfaces. Academic Press, New York

    Google Scholar 

  • Bonaccurso E, Butt HJ, Craig VSJ (2003) Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phys Rev Lett 90:144501

    Google Scholar 

  • Bourlon B, Wong J, Miko C, Forro L, Bockrath M (2007) A nanoscale probe for fluidic and ionic transport. Nat Nanotechnol 2:104–107

    Google Scholar 

  • Branam RD (2005) Molecular dynamics simulation of supercritical fluids. PhD thesis, Pennsylvania State University, Pennsylvania

  • Buckingham RA (1938) The classical equation of state of gaseous helium, neon and argon. Proc R Soc Lond Ser A 168:264–283

    Google Scholar 

  • Chandrasekhar J, Spellmeyer DC, Jorgensen WL (1984) Energy component analysis for dilute aqueous solutions of Li+, Na+, F-, and Cl- ions. J Am Chem Soc 106:903–910

    Google Scholar 

  • Chaudhury MK, Whitesides GM (1992) How to make water run uphill. Science 256:1539–1541

    Google Scholar 

  • Chen SC, Hseih WC, Lin MF (2005) Charge screening of single-walled carbon nanotubes in a uniform transverse electric field. Phys Rev B 72:193412

    Google Scholar 

  • Choi CH, Westin KJA, Breuer KS (2003) Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys Fluids 15:2897–2902

    Google Scholar 

  • Churaev NV, Sobolev VD, Somov AN (1984) Slippage of liquid over hydrophobic solid-surfaces. J Colloid Interface Sci 97:574–581

    Google Scholar 

  • Cieplak M, Koplik J, Banavar JR (2001) Boundary conditions at a fluid–solid interface. Phys Rev Lett 86:803–806

    Google Scholar 

  • Cottin-Bizonne C, Jurine S, Baudry J, Crassous J, Restagno F, Charlaix E (2002) Nanorheology: an investigation of the boundary condition at hydrophobic and hydrophilic interfaces. Eur Phys J E 9:47–53

    Google Scholar 

  • Craig VSJ, Neto C, Williams DRM (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87:054504

    Google Scholar 

  • Daiguji H, Yang PD, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Letters 4:137–142

    Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N. Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089

    Google Scholar 

  • de Gennes PG, Brochard-Wyart E, Quere DF (2003) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York

    Google Scholar 

  • Dukhin SS, Derjaguin BV (1974) Electrokinetic phenomena, surface and colloid science, vol 7. Wiley, New York

    Google Scholar 

  • Ermakov SV, Jacobson SC, Ramsey JM (1998) Computer simulations of electrokinetic transport in microfabricated channel structures. Anal Chem 70:4494–4504

    Google Scholar 

  • Errington JR, Panagiotopoulos AZ (1999) A new intermolecular potential model for the n-alkane homologous series. J Phys Chem B 103:6314–6322

    Google Scholar 

  • Fan R, Wu YY, Li DY, Yue M, Majumdar A, Yang PD (2003) Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J Am Chem Soc 125:5254–5255

    Google Scholar 

  • Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Freund JB (2002) Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. J Chem Phys 116:2194–2200

    Google Scholar 

  • Galea TM, Attard P (2004) Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid–solid boundary during shear flow. Langmuir 20:3477–3482

    Google Scholar 

  • Galliero G, Boned C, Baylaucq A, Montel F (2006) Molecular dynamics comparative study of Lennard–Jones a-6 and exponential a-6 potentials: application to real simple fluids (viscosity and pressure). Phys Rev E 73:061201

    Google Scholar 

  • Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044

    Google Scholar 

  • Gogotsi Y, Libera JA, Guvenc-Yazicioglu A, Megaridis CM (2001) In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett 79:1021

    Google Scholar 

  • Gong XJ, Li JY, Lu HJ, Wan RZ, Li JC, Hu J, Fang HP (2007) A charge-driven molecular water pump. Nat Lett 2:709–712

    Google Scholar 

  • Haile JM (1992) Molecular dynamics simulation: elementary methods. Interscience, New York

    Google Scholar 

  • Han M (2005) Thermophoresis in liquids: a molecular dynamics simulation study. J Colloid Interface Sci 284:339–348

    Google Scholar 

  • Han M (2008) Thermally-driven nanoscale pump by molecular dynamics simulation. J Mech Sci Technol 22:157–165

    Google Scholar 

  • Heinz TN, Hunenberger PH (2004) A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions. J Comput Chem 25:1474–1486

    Google Scholar 

  • Holt JK, Park HG, Wang YM (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034

    Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Google Scholar 

  • Horn RG, Vinogradova OI, Mackay ME, Phan-Thien N (2000) Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer. J Chem Phys 112:6424–6433

    Google Scholar 

  • Hummer G, Rasalah JG, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Google Scholar 

  • Jabbarzadeh A, Atkinson JD, Tanner RI (1999) Wall slip in the molecular dynamics simulation of thin films of hexadecane. J Chem Phys 110:2612–2620

    Google Scholar 

  • Jakobtorweihen S, Lowe CP, Keil FJ, Smit B (2006) A novel algorithm to model the influence of host lattice flexibility in molecular dynamics simulations: loading dependence of self-diffusion in carbon nanotubes. J Chem Phys 124:154706-1-13

    Google Scholar 

  • Joly L, Ybert C, Trizac E, Bocquet L (2004) Hydrodynamics within the electric double layer on slipping surfaces. Phys Rev Lett 93:257805

    Google Scholar 

  • Joly L, Ybert C, Bocquet L (2006) Probing the nanohydrodynamics at liquid–solid interfaces using thermal motion. Phys Rev Lett 96:046101

    Google Scholar 

  • Jorgensen WL, Bigot B, Chandrasekhar J (1982) Quantum and statistical mechanical studies of liquids. 21. The nature of dilute solutions of sodium and methoxide ions in methanol. J Am Chem Soc 104:4584–4591

    Google Scholar 

  • Khare R, dePablo JJ, Yethiraj A (1996) Rheology of confined polymer melts. Macromolecules 29:7910–7918

    Google Scholar 

  • Khare R, de Pablo J, Yethiraj A (1997) Molecular simulation and continuum mechanics study of simple fluids in nonisothermal planar coquette flows. J Chem Phys 107:2589–2596

    Google Scholar 

  • Kim CS (2007) Nonequilibrium molecular dynamics approach for nanoelectromechanical systems: nanofluidics and its applications. J Fluids Eng 129:1140–1146

    Google Scholar 

  • Kim D, Darve E (2006) Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Phys Rev E 73:051203-1-12

    Google Scholar 

  • Kim BH, Beskok A, Cagin T (2008) Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid–liquid interfaces. Microfluid Nanofluid 5:551–559

    Google Scholar 

  • Koike A, Yoneya M (1998) Chain length effects on frictional behavior of confined ultrathin films of linear alkanes under shear. J Phys Chem B 102:3669–3675

    Google Scholar 

  • Koplik J, Banavar JR, Willemsen JF (1989) Molecular-dynamics of fluid-flow at solid-surfaces. Phys Fluids A 1:781–794

    Google Scholar 

  • Kuo TC, Sloan LA, Sweedler JV, Bohn PW (2001) Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: effect of surface charge density and debye length. Langmuir 17:6298–6303

    Google Scholar 

  • Li TS, Lin MF (2006) Electronic properties of carbon nanotubes under external fields. Phys Rev B 73:075432

    Google Scholar 

  • Li Y, Lu D, Rotkin SV, Schulten K, Ravaiolli U (2004) Electronic structure and dielectric behavior of finite-length single-walled carbon nanotubes. In: 4th IEEE conference on nanotechnology, pp 273–275

  • Linke H, Aleman BJ, Melling LD, Taormina MJ, Francis MJ, Dow-Hygelund CC, Narayanan V, Taylor RP, Stout A (2006) Self-propelled Leidenfrost droplets. Phys Rev Lett 96:154502

    Google Scholar 

  • Liu L, Zhao JB, Yin CY, Culligan PJ, Chen X (2009) Mechanisms of water infiltration into conical hydrophobic nanopores. Phys Chem Chem Phys 11:6520–6524

    Google Scholar 

  • Ludwig KF (2004) Molecular dynamics simulations of sub- and supercritical injection. Master thesis, Pennsylvania State University, Pennsylvania

  • Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors—a review. IEEE Sens J 7:266–284

    Google Scholar 

  • Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112:8910–8922

    Google Scholar 

  • Martini A, Roxin A, Snurr RQ, Wang Q, Lichter S (2008) Molecular mechanisms of liquid slip. J Fluid Mech 600:257–269

    MATH  Google Scholar 

  • Mashl RJ, Joseph S, Aluru NR, Jakobsson E (2003) Anomalously immobilized water: a new water phase induced by confinement in nanotubes. Nano Letters 3:589

    Google Scholar 

  • Mason DR (2005) Faster neighbour list generation using a novel lattice vector representation. Comput Phys Commun 170:31–41

    MATH  Google Scholar 

  • Maximova T, Keasar C (2006) A novel algorithm for non-bonded-list updating in molecular simulations. J Comput Biol 13:1041–1048

    MathSciNet  Google Scholar 

  • Maxwell JC (1879) On stresses in rarified gases arising from inequalities of temperature. Philos Trans R Soc Lond 170:231–256

    Google Scholar 

  • Micci MM, Oechsle SK, Mayer WOH (2000) Molecular dynamics simulations of primary atomization. In: 8th international conference on liquid atomization and spray systems, Pasadena, CA

  • Migler KB, Hervet H, Leger L (1993) Slip transition of a polymer melt under shear-stress. Phys Rev Lett 70:287–290

    Google Scholar 

  • Mitchell MJ, Qiao R, Aluru NR (2000) Meshless analysis of steady-state electro-osmotic transport. J MEMS 9:435–449

    Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962

    Google Scholar 

  • Moseler M, Landman U (2000) Formation, stability, and breakup of nanojets. Science 289:1165–1169

    Google Scholar 

  • Niavarani A, Priezjev NV (2008a) Rheological study of polymer flow past rough surfaces with slip boundary conditions. J Chem Phys 129:144902

    Google Scholar 

  • Niavarani A, Priezjev NV (2008b) Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces. Phys Rev E 77:041606

    Google Scholar 

  • Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Google Scholar 

  • Nose S (2002) A molecular dynamics methods for simulations in the canonical ensemble. Mol Phys 100:191–198

    Google Scholar 

  • Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 2. Experiments. Anal Chem 77:6782–6789

    Google Scholar 

  • Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85:980–983

    Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    MATH  Google Scholar 

  • Priezjev NV (2007) Rate-dependent slip boundary conditions for simple fluids. Phys Rev E 75:051605

    Google Scholar 

  • Priezjev NV, Troian SM (2004) Molecular origin and dynamic behavior of slip in sheared polymer films. Phys Rev Lett 92:018302

    Google Scholar 

  • Priezjev N, Troian SM (2006) Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J Fluid Mech 554:25–46

    MATH  Google Scholar 

  • Qiao R, Aluru NR (2003) Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys 118:4692–4701

    Google Scholar 

  • Qiao R, Aluru NR (2005) Atomistic simulation of KCI transport in charged silicon nanochannels: interfacial effects. Colloids Surf A 267:103–109

    Google Scholar 

  • Qiao Y, Cao GX, Chen X (2007) Effects of gas molecules on nanofluidic behaviors. J Am Chem Soc 129:2355–2359

    Google Scholar 

  • Qiao Y, Liu L, Chen X (2009) Pressurized liquid in nanopores: a modified Laplace-Yong equation. Nano Letters 9:984–988

    Google Scholar 

  • Raviv U, Laurat P, Klein J (2001) Fluidity of water confined to subnanometre films. Nature 413:51–54

    Google Scholar 

  • Regan BC, Aloni S, Ritchie RO, Dahmen U, Zettl A (2004) Carbon nanotubes as nanoscale mass conveyors. Nature 428:924–927

    Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic-structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Google Scholar 

  • Sanchez-Reyes J, Archer LA (2003) Interfacial slip violations in polymer solutions: role of microscale surface roughness. Langmuir 19:3304–3312

    Google Scholar 

  • Schmatko T, Hervet H, Leger L (2005) Friction and slip at simple fluid–solid interfaces: the roles of the molecular shape and the solid–liquid interaction. Phys Rev Lett 94:244501

    Google Scholar 

  • Schmatko T, Hervet H, Leger L (2006) Effect of nanometric-scale roughness on slip at the wall of simple fluids. Langmuir 22:6843–6850

    Google Scholar 

  • Service RF (2006) Desalination freshens up. Science 313:1088–1090

    Google Scholar 

  • Shin H (2006) Non-equilibrium molecular dynamics simulations of nanojet injection. PhD thesis, Yonsei University, Seoul, Korea

  • Sofos F, Karakasidis T, Liakopoulos A (2009) Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. Int J Heat Mass Transf 52:735–743

    MATH  Google Scholar 

  • Soong CY, Yen TH, Tzeng PY (2007) Molecular dynamics simulation of nanochannel flows with effects of wall lattice–fluid interactions. Phys Rev E 76:036303-1-14

    Google Scholar 

  • Spoel DVD, Lindahl E, Hess B, Buuren ARV, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, Drunen RV et al (2004) Gromacs user manual, version 3.2. University of Groningen, Groningen. www.gromacs.org

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901

    Google Scholar 

  • Stern MB, Geis MW, Curtin JE (1997) Nanochannel fabrication for chemical sensors. J Vac Sci Technol 15:2887–2891

    Google Scholar 

  • Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  • Sun H, Ren P, Fried JR (1998) The COMPASS force field parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Google Scholar 

  • Sutmann G, Stegailov V (2006) Optimization of neighbor list techniques in liquid matter simulations. J Mol Liq 125:197–203

    Google Scholar 

  • Tas NR, Haneveld J, Jansen HV, Elwenspoek M, Berg AVD (2004) Capillary filling speed of water in nanochannels. Appl Phys Lett 85:3274–3726

    Google Scholar 

  • Tenenbaum A, Ciccotti G, Gallico R (1982) Stationary nonequilibrium states by molecular dynamics—Fourier’s law. Phys Rev A 25:2778–2787

    Google Scholar 

  • Thomas JA, McGauthey AJH (2009) Water flow in carbon nanotubes: transition to subcontinuum transport. Phys Rev Lett 102:184502

    Google Scholar 

  • Thompson PA, Robbins MO (1990) Shear-flow near solids: epitaxial order and flow boundary-conditions. Phys Rev A 41:6830–6837

    Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Google Scholar 

  • Thompson PA, Robbins MO, Grest GS (1995) Structure and shear response in nanometer-thick films. Isr J Chem 35:93–106

    Google Scholar 

  • Turner CH, Brennan JK, Pikunic J, Gubbins KE (2002) Simulation of chemical reaction equilibria and kinetics in heterogeneous carbon micropores. Appl Surf Sci 196:366–374

    Google Scholar 

  • Tyrell J, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:176104

    Google Scholar 

  • Vinogradova OI, Yakubov GE (2006) Surface roughness and hydrodynamic boundary conditions. Phys Rev E 73:045302

    Google Scholar 

  • Wang DB, Hsiao FB, Chuang CH, Lee YC (2007) Algorithm optimization in molecular dynamics simulation. Comput Phys Comm 177:551–559

    MATH  MathSciNet  Google Scholar 

  • Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107:1345–1352

    Google Scholar 

  • Wheeler TD, Stroock AD (2008) The transpiration of water at negative pressures in a synthetic tree. Nature 455:208–212

    Google Scholar 

  • Whitby M, Quirk N (2007) Fluid flow in carbon nanotubes and nanopipes. Nature Nanotech 2:87–94

    Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Google Scholar 

  • Xu Y, Aluru NR (2008) Carbon nanotube screening effects on the water–ion channels. Appl Phys Lett 93:043122-1-3

    Google Scholar 

  • Xue YQ, Chen MD (2006) Dynamics of molecules translocating through carbon nanotubes as nanofluidic channels. Nanotechnology 17:5216–5223

    Google Scholar 

  • Yang SC (2006) Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluid Nanofluid 2:501–511

    Google Scholar 

  • Yang L (2007) Modeling the selective partitioning of cations into negatively charged nanopores in water. J Chem Phys 126:084706-1-8

    Google Scholar 

  • Yao ZH, Wang HS, Liu GR, Cheng M (2004) Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method. Comput Phys Commun 161:27–35

    Google Scholar 

  • Zhang HZ, Ely JF (2004) AUA model NEMD and EMD simulations of the shear viscosity of alkane and alcohol systems. Fluid Phase Equilib 217:111–118

    Google Scholar 

  • Zhang WF, Li DQ (2007) Simulation of flow speed 3D nanochannel flow. Microfluid Nanofluid 3:417–425

    Google Scholar 

Download references

Acknowledgements

The study is supported by the National Natural Science Foundation of China with the contract number 50906088, and the National Natural Science Foundation of China with the contract number 50825603. The authors wish to thank the support of the Natural Sciences and Engineering Research Council through a research grant to D. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xu, J. & Li, D. Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid 9, 1011–1031 (2010). https://doi.org/10.1007/s10404-010-0612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0612-5

Keywords

Navigation