Skip to main content
Log in

Lattice Boltzmann method for microfluidics: models and applications

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method (LBM) has experienced tremendous advances and has been well accepted as a useful method to simulate various fluid behaviors. For computational microfluidics, LBM may present some advantages, including the physical representation of microscopic interactions, the uniform algorithm for multiphase flows, and the easiness in dealing with complex boundary. In addition, LBM-like algorithms have been developed to solve microfluidics-related processes and phenomena, such as heat transfer, electric/magnetic field, and diffusion. This article provides a practical overview of these LBM models and implementation details for external force, initial condition, and boundary condition. Moreover, recent LBM applications in various microfluidic situations have been reviewed, including microscopic gaseous flows, surface wettability and solid–liquid interfacial slip, multiphase flows in microchannels, electrokinetic flows, interface deformation in electric/magnetic field, flows through porous structures, and biological microflows. These simulations show some examples of the capability and efficiency of LBM in computational microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe T (1997) Derivation of the lattice Boltzmann method by means of the descrete ordinate method for the Boltzmann equation. J Comput Phys 131:241–246

    MATH  Google Scholar 

  • Agrawal A, Djenidi L, Antonia RA (2005) Simulation of gas flow in microchannels with a sudden expansion or contraction. J Fluid Mech 530:135–144

    MATH  Google Scholar 

  • Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Ann Rev Fluid Mech 42:439–472

    MathSciNet  Google Scholar 

  • Aidun CK, Lu Y, Ding E (1998) Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech 373:287–311

    MATH  Google Scholar 

  • Al-Zoubi A, Brenner G (2004) Comparative study of thermal flows with different finite volume and lattice Boltzmann schemes. Int J Modern Phys C 15:307–319

    Google Scholar 

  • Alexanders F, Chen S, Sterling J (1993) Lattice Boltzmann thermo-hydrodynamics. Phys Rev E 47:R2249–R2252

    Google Scholar 

  • Aminfar H, Mohammadpourfard M (2009) Lattice Boltzmann method for electrowetting modeling and simulation. Comput Methods Appl Mech Eng 198:3852–3868

    MathSciNet  Google Scholar 

  • Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Ann Rev Fluid Mech 30:139–165

    MathSciNet  Google Scholar 

  • Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses of fluid shear stress. Circulation J 73:1983–992

    Google Scholar 

  • Ansumali S, Karlin IV (2002) Kinetic boundary conditions in the lattice Boltzmann method. Phys Rev E 66:026311

    MathSciNet  Google Scholar 

  • Ansumali S, Karlin IV, Frouzakis CE, Boulouchos KB (2006) Entropic lattice Boltzmann method for microflows. Phys A 359:289–305

    Google Scholar 

  • Artoli AM, Sequeira A, Silva-Herdade AS, Saldanha C (2007) Leukocytes rolling and recruitment by endothelial cells: hemorheological experiments and numerical simulations. J Biomech 40:3493–3502

    Google Scholar 

  • Asinari P, Quaglia MC, von Spakovsky MR, Kasula BV (2007) Direct numerical calculation of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method. J Power Sour 170:359–375

    Google Scholar 

  • Bao J, Yuan P, Schaefer L (2008) A mass conserving boundary condition for the lattice Boltzmann equation method. J Comput Phys 227:8472–8487

    MATH  MathSciNet  Google Scholar 

  • Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid-solid interface. Phys Rev Lett 82:4671–4674

    Google Scholar 

  • Baskurt O, Meiselman H (2007) Hemodynamic effects of red blood cell aggregation. Indian J Exp Biol 45:25–31

    Google Scholar 

  • Belov EB, Lomov SV, Verpoest I, Peters T, Roose D, Parnas RS, Hoes K, Sol H (2004) Modelling of permeability of textile reinforcements: lattice Boltzmann method. Compos Sci Technol 64:1069–1080

    Google Scholar 

  • Benzi R, Succi S, Gassola MV (1992) The lattice Boltzmann-equation—theory and applications. Phys Rep Rev Sect Phys Lett 222:145–197

    Google Scholar 

  • Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006a) Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys Rev E 74:021509

    MathSciNet  Google Scholar 

  • Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006b) Mesoscopic two-phase model for describing apparent slip in micro-channel flows. Europhys Lett 74:651–657

    MathSciNet  Google Scholar 

  • Benzi R, Sbragaglia M, Succi S, Bernaschi M, Chibbaro S (2009) Mesoscopic lattice Boltzmann modeling of soft-glassy systems: theory and simulations. J Chem Phys 131:104903

    Google Scholar 

  • Bertrand E, Blake TD, De Coninck J (2009) Influence of solid-liquid interactions on dynamic wetting: a molecular dynamics study. J Phys Condens Matter 21:464124

    Google Scholar 

  • Beskok A, Karniadakis GE, Trimmer W (1996) Rarefaction and compressibility effects in gas microflows. J Fluid Eng 118:448–456

    Google Scholar 

  • Besold G, Vattulainen I, Karttunen M, Polson JM (2000) Towards better integrators for dissipative particle dynamics simulations. Phys Rev E 62:R7611–R7614

    Google Scholar 

  • Bhatnagar P, Gross E, Krook M (1954) A model for collisional processes in gases I: small amplitude processes in charged and neutral one-component system. Phys Rev 94:511–525

    MATH  Google Scholar 

  • Boyd J, Buick JM (2008) Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis. Phys Med Biol 53:5767–5779

    Google Scholar 

  • Breyiannis G, Valougeorgis D (2004) Lattice kinetic simulations in three-dimensional magnetohydrodynamics. Phys Rev E 69:065702

    Google Scholar 

  • Briant AJ, Yeomans JM (2004) Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Phys Rev E 69:031603

    Google Scholar 

  • Briant AJ, Papatzacos P, Yeomans JM (2002) Lattice Boltzmann simulations of contact line motion in a liquid-gas system. Philos Trans Roy Soc Lond A 360:485–495

    MATH  Google Scholar 

  • Briant A, Wagner A, Yeomans J (2004) Lattice Boltzmann simulations of contact line motion. I: liquid-gas systems. Phys Rev E 69:031602

    Google Scholar 

  • Buick JM (1997) Lattice Boltzmann methods in interfacial wave modelling. PhD thesis, University of Edinburgh

  • Buick JM, Greated CA (2000) Gravity in a lattice Boltzmann model. Phys Rev E 61:5307–5320

    Google Scholar 

  • Cahn J, Hilliard J (1958) Free energy of a nonuniform system i: interfacial free energy. J Chem Phys 28:258–267

    Google Scholar 

  • Calhoun R, Yadav A, Phelan P, Vuppu A, Garcia A, Hayes M (2006) Paramagnetic particles and mixing in micro-scale flows. Lab Chip 6:247–257

    Google Scholar 

  • Cannon J, Hess O (2010) Fundamental dynamics of flow through carbon nanotube membranes. Microfluid Nanofluid 8:21–31

    Google Scholar 

  • Chai Z, Shi B (2007) Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys Lett A 364:183–188

    Google Scholar 

  • Chai Z, Shi B, Zheng L (2007) Lattice Boltzmann simulation of viscous dissipation in electro-osmotic flow in microchannels. Int J Modern Phys C 18:1119–1131

    MATH  Google Scholar 

  • Chai Z, Guo Z, Zheng L, Shi B (2008) Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel. J Appl Phys 104:014902

    Google Scholar 

  • Chang Q, Alexander J (2006) Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method. Microfluid Nanofluid 2:309–326

    Google Scholar 

  • Chatterjee D (2009) An enthalpy-based thermal lattice Boltzmann model for non-isothermal systems. EPL 86:14004

    Google Scholar 

  • Chatterji A, Horbach J (2007) Electrophoretic properties of highly charged colloids: a hybrid molecular dynamics/lattice Boltzmann simulation study. J Chem Phys 126:064907

    Google Scholar 

  • Chen Y (1994) Thermal lattice Bhatnagar–Gross–Krook model without nonlinear deviations in macrodynamic equations. Phys Rev E 50:2776

    Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364

    MathSciNet  Google Scholar 

  • Chen X, Shi B (2005) A new lattice Boltzmann model for incompressible magnetohydrodynamics. Chin Phys 14:1398–1406

    Google Scholar 

  • Chen S, Chen H, Martnez D, Matthaeus W (1991) Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys Rev Lett 67:3776–3779

    Google Scholar 

  • Chen Y, Ma H, Graham MD, de Pablo JJ (2007) Modeling DNA in confinement: a comparison between the brownian dynamics and lattice Boltzmann method. Macromolecule 40:5978–5984

    Google Scholar 

  • Chiappini D, Bella G, Succi S, Ubertini S (2009) Applications of finite-difference lattice Boltzmann method to breakup and coalescence in multiphase flows. Int J Modern Phys C 20:1803–1816

    MATH  Google Scholar 

  • Chibbaro S, Biferale L, Binder K, Dimitrov D, Diotallevi F, Milchev A, Succi S (2009a) Hydrokinetic simulations of nanoscopic precursor films in rough channels. J Stat Mech Theory Exp. doi:10.1088/1742-5468/2009/06/P06007

    Google Scholar 

  • Chibbaro S, Costa E, Dimitrov DI, Diotallevi F, Milchev A, Palmieri D, Pontrelli G, Succi S (2009b) Capillary filling in microchannels with wall corrugations: a comparative study of the Concus-Finn criterion by continuum, kinetic, and atomistic approaches. Langmuir 25:12653–12660

    Google Scholar 

  • Chiu WKS, Joshi AS, Grew KN (2009) Lattice Boltzmann model for multi-component mass transfer in a solid oxide fuel cell anode with heterogeneous internal reformation and electrochemistry. Eur Phys J Special Top 171:159–165

    Google Scholar 

  • Clime L, Brassard D, Veres T (2009) Numerical modeling of the splitting of magnetic droplets by multiphase lattice Boltzmann equation. J Appl Phys 105:07B517

    Google Scholar 

  • Darhuber AA, Troian SM (2005) Principles of microfluidic actuation by modulation of surface stresses. Ann Rev Fluid Mech 37:425–455

    MathSciNet  Google Scholar 

  • Dawson S, Chen S, Doolen G (1993) Lattice Boltzmann computations for reaction-diffusion equations. J Chem Phys 98:1514–1523

    Google Scholar 

  • de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6:1125–1139

    Google Scholar 

  • Dellar PJ (2002) Lattice kinetic schemes for magnetohydrodynamics. J Comput Phys 179:95–126

    MATH  MathSciNet  Google Scholar 

  • d‘Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L (2002) Multiple-relaxation-time lattice Boltzmann models in three-dimensions. Philos Trans Roy Soc Lond A 360:437–451

    MATH  MathSciNet  Google Scholar 

  • Dimitrov DI, Milchev A, Binder K (2007) Capillary rise in nanopores: molecular dynamics evidence for the Lucas-Washburn equation. Phys Rev Lett 99:054501

    Google Scholar 

  • Diotallevi F, Biferale L, Chibbaro S, Puglisi A, Succi S (2008) Front pinning in capillary filling of chemically coated channels. Phys Rev E 78:036305

    Google Scholar 

  • Diotallevi F, Biferale L, Chibbaro S, Lamura A, Pontrelli G, Sbragaglia M, Succi S, Toschi F (2009a) Capillary filling using lattice Boltzmann equations: the case of multi-phase flows. Eur Phys J Special Top 166:111–116

    Google Scholar 

  • Diotallevi F, Biferale L, Chibbaro S, Pontrelli G, Toschi F, Succi S (2009b) Lattice Boltzmann simulations of capillary filling: finite vapour density effects. Eur Phys J Special Top 171:237–243

    Google Scholar 

  • D’Orazio A, Succi S (2004) Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions. Futur Gener Comput Syst 20:935–944

    Google Scholar 

  • D’Ortona U, Salin D, Cieplak M, Rybka RB, Banavar JR (1995) 2-color nonlinear Boltzmann cellular-automata—surface-tension and wetting. Phys Rev E 51:3718–3728

    Google Scholar 

  • Dunweg B, Ladd AJC (2009) Lattice Boltzmann simulations of soft matter systems. Adv Polym Sci 221:89–166

    Google Scholar 

  • Dupin MM, Halliday I, Care CM (2006) Simulation of a microfluidic flow-focusing device. Phys Rev E 73:055701

    Google Scholar 

  • Dupin MM, Halliday I, Care CM, Alboul L, Munn LL (2007) Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys Rev E 75:066707

    Google Scholar 

  • Dupuis A, Yeomans JM (2004) Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces. Futur Gener Comput Syst 20:993–1001

    Google Scholar 

  • Dupuis A, Chatelain P, Koumoutsakos P (2008) An immersed boundary-lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. J Comput Phys 227:4486–4498

    MATH  MathSciNet  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    Google Scholar 

  • Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pollack V, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24:10–24

    Google Scholar 

  • Fan L, Fang H, Lin Z (2001) Simulation of contact line dynamics in a two-dimensional capillary tube by the lattice Boltzmann model. Phys Rev E 63:051603

    Google Scholar 

  • Fang H, Lin Z, Wang Z (1998) Lattice Boltzmann simulation of viscous fluid systems with elastic boundaries. Phys Rev E 57:R25–R28

    Google Scholar 

  • Feng Z, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195:602–628

    MATH  Google Scholar 

  • Filipovic N, Ivanovic M, Kojic M (2009) A comparative numerical study between dissipative particle dynamics and smoothed particle hydrodynamics when applied to simple unsteady flows in microfluidics. Microfluid Nanofluid 7:227–235

    Google Scholar 

  • Filippova O, Hanel D (1998) Grid refinement for lattice-BGK models. J Comput Phys 147:219–228

    MATH  Google Scholar 

  • Fisk S, Widom B (1969) Structure and free energy of interface between fluid phases in equilibrium near critical point. J Chem Phys 50:3219–3227

    Google Scholar 

  • Freed DM (1998) Lattice Boltzmann method for macroscopic porous media modeling. Int J Modern Phys C 9:1491–1503

    Google Scholar 

  • Freitas RK, Schroder W (2008) Numerical investigation of the three-dimensional flow in a human lung model. J Biomech 41:2446–2457

    Google Scholar 

  • Freudiger S, Hegewald J, Krafczyk M (2008) A parallelisation concept for a multi-physics lattice Boltzmann prototype based on hierarchical grids. Prog Comput Fluid Dyn 8:168–178

    MATH  Google Scholar 

  • Fu X, Li B, Zhang J, Tian F, Kwok DY (2007) Electrokinetic slip flow of microfluidics in terms of streaming potential by a lattice Boltzmann method: A bottom-up approach. Int J Modern Phys C 18:693–700

    MATH  Google Scholar 

  • Fyta MG, Melchionna S, Kaxiras E, Succi S (2006) Multiscale coupling of molecular dynamics and hydrodynamics: Application to DNA translocation through a nanopore. Multiscale Model Simul 5:1156–1173

    MATH  MathSciNet  Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 121:5–33

    Google Scholar 

  • Gao L, McCarthy TJ (2008) Teflon is hydrophilic: comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 24:9183–9188

    Google Scholar 

  • Geller S, Krafczyk M, Toelke J, Turek S, Hron J (2006) Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Computers and Fluids 35:888–897

    MATH  Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40

    Google Scholar 

  • Ginzburg I, Steiner K (2003) Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J Comput Phys 185:61–99

    MATH  MathSciNet  Google Scholar 

  • Giupponi G, De Fabritiis G, Coveney PV (2007) Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. J Chem Phys 126:154903

    Google Scholar 

  • Gunstensen AK, Rothman RH (1993) Lattice-Boltzmann studies of immiscible 2-phase flow through porous-media. J Geophys Res Solid Earth 98:6431–6441

    Google Scholar 

  • Gunstensen A, Rothman D, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327

    Google Scholar 

  • Guo Z, Zhao T (2002) Lattice Boltzmann model for incompressible flows through porous media. Phys Rev E 66:036304

    Google Scholar 

  • Guo Z, Zheng C (2008) Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int J Comput Fluid Dyn 22:465–473

    MATH  Google Scholar 

  • Guo Z, Shi B, Wang N (1999) Fully Lagrangian and lattice Boltzmann methods for the advection-diffusion equation. J Sci Comput 14:291–300

    MATH  MathSciNet  Google Scholar 

  • Guo Z, Zheng C, Shi B (2002a) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65:046308

    Google Scholar 

  • Guo Z, Zheng C, Shi B (2002b) An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids 14:2007–2010

    Google Scholar 

  • Guo Z, Zhao T, Shi Y (2005) A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices. J Chem Phys 122:144907

    Google Scholar 

  • Guo Z, Zhao T, Shi Y (2006) Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J Appl Phys 99:074903

    Google Scholar 

  • Guo Z, Shi B, Zhao T, Zheng C (2007) Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys Rev E 76:056704

    Google Scholar 

  • Guo Z, Zheng C, Shi B (2008) Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys Rev E 77:036707

    Google Scholar 

  • Guo Z, Han H, Shi B, Zheng C (2009) Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows. Phys Rev E 79:046708

    MathSciNet  Google Scholar 

  • Gupta A, Murshed S, Kumar R (2009) Droplet formation and stability of flows in a microfluidic T-junction. Appl Phys Lett 94:164107

    Google Scholar 

  • Haber C (2006) Microfluidics in commercial applications: an industry perspective. Lab Chip 6:1118–1121

    Google Scholar 

  • Hallmark B, Parmar C, Walker D, Hornung CH, Mackley MR, Davidson JF (2009) The experimental observation and modelling of microdroplet formation within a plastic microcapillary array. Chem Eng Sci 64:4758–4764

    Google Scholar 

  • Harting J, Kunert C, Herrmann HJ (2006) Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels. Europhys Lett 75:328–334

    Google Scholar 

  • He X, Li N (2000) Lattice Boltzmann simulation of electrochemical systems. Comput Phys Commun 129:158–166

    MATH  MathSciNet  Google Scholar 

  • He X, Luo L-S (1997) A priori derivation of the lattice Boltzmann equation. Phys Rev E 55:6333–6336

    Google Scholar 

  • He X, Zou Q, Luo L, Dembo M (1997) Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J Stat Phys 87:115–136

    MATH  MathSciNet  Google Scholar 

  • He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146:282–300

    MATH  MathSciNet  Google Scholar 

  • He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152:642–663

    MATH  MathSciNet  Google Scholar 

  • He X, Li N, Goldstein B (2000) Lattice Boltzmann simulation of diffusion-convection systems with surface chemical reaction. Mol Simul 25:145–156

    MATH  Google Scholar 

  • Heemels MW, Hagen MHJ, Lowe CP (2000) Simulating solid colloidal particles using the lattice-Boltzmann method. J Comput Phys 164:48–61

    MATH  Google Scholar 

  • Hetsroni G, Mosyak A, Pogrebnyak E, Segal Z (2009) Heat transfer of gas-liquid mixture in micro-channel heat sink. Int J Heat Mass Transf 52:3963–3971

    MATH  Google Scholar 

  • Hlushkou D, Kandhai D, Tallarek U (2004) Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels. Int J Numer Methods Fluids 46:507–532

    MATH  Google Scholar 

  • Hlushkou S, Seidel-Morgenstern A, Tallarek U (2005) Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres. Langmuir 21:6097–6112

    Google Scholar 

  • Ho CM, Tai YC (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Ann Rev Fluid Mech 30:579–612

    Google Scholar 

  • Horbach J, Succi S (2006) Lattice Boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows. Phys Rev Lett 96:224503

    Google Scholar 

  • Hou S, Shan X, Zou Q, Doolen GD, Soll WE (1997) Evaluation of two lattice Boltzmann models for multiphase flows. J Comput Phys 138:695–713

    MATH  MathSciNet  Google Scholar 

  • Huang H, Lu X (2009) Theoretical and numerical study of axisymmetric lattice Boltzmann models. Phys Rev E 80:016701

    Google Scholar 

  • Huang W, Li Y, Liu Q (2007) Application of the lattice Boltzmann method to electrohydrodynamics: deformation and instability of liquid drops in electrostatic fields. Chin Sci Bul 52:3319–3324

    MATH  Google Scholar 

  • Hyvaluoma J, Koponen A, Raiskinmaki P, Timonen J (2007) Droplets on inclined rough surfaces. Eur Phys J E 23:289–293

    Google Scholar 

  • Inamuro T, Ogata T (2004) A lattice kinetic scheme for bubble flows. Philos Trans Roy Soc Lond A 362:1735–1743

    MathSciNet  Google Scholar 

  • Inamuro T, Yoshino M, Inoue H, Mizuno R, Ogino F (2002) A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J Comput Phys 179:201–215

    MATH  Google Scholar 

  • Inamuro T, Tomita R, Ogino F (2003) Lattice Boltzmann simulations of drop deformation and breakup in shear flows. Int J Modern Phys B 17:21–26

    Google Scholar 

  • Inamuro T, Ogata T, Tajima S, Konishi N (2004a) A lattice Boltzmann method for incompressible two-phase flows with large density differences. J Comput Phys 198:628–644

    MATH  Google Scholar 

  • Inamuro T, Tajima S, Ogino F (2004b) Lattice Boltzmann simulation of droplet collision dynamics. Int J Heat Mass Transf 47:4649–4657

    MATH  Google Scholar 

  • Iwahara D, Shinto H, Miyahara M, Higashitani K (2003) Liquid drops on homogeneous and chemically heterogeneous surfaces: A two-dimensional lattice Boltzmann study. Langmuir 19:9086–9093

    Google Scholar 

  • Izquierdo S, Martínez-Lera P, Fueyo N (2009) Analysis of open boundary effects in unsteady lattice Boltzmann simulations. Comput Math Appl 58:914–921

    MATH  MathSciNet  Google Scholar 

  • Joshi AS, Sun Y (2009) Multiphase lattice Boltzmann method for particle suspensions. Phys Rev E 79:066703

    Google Scholar 

  • Joshi AS, Grew KN, Peracchio AA, Chiu WKS (2007) Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode. J Power Sour 164:631–638

    Google Scholar 

  • Joshi AS, Grew KN, Izzo JR Jr., Peracchio AA, Chiu WKS (2010) Lattice Boltzmann modeling of three-dimensional, multicomponent mass diffusion in a solid oxide fuel cell anode. J Fuel Cell Sci Technol 7:011006

    Google Scholar 

  • Kadau K, Germann TC, Lomdahl PS (2006) Molecular dynamics comes of age: 320 billion atom simulation on Bluegene/L. Int J Modern Phys C 17:1755–1761

    Google Scholar 

  • Kang Y, Li D (2009) Electrokinetic motion of particles and cells in microchannels. Microfluid Nanofluid 6:431–460

    Google Scholar 

  • Kang Q, Zhang D, Chen S (2002) Displacement of a two-dimensional immiscible droplet in a channel. Phys Fluids 14:3203–3214

    Google Scholar 

  • Kang Q, Lichtner PC, Zhang D (2006) Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media. J Geophys Res Solid Earth 111:B05203

    Google Scholar 

  • Kang J, Heo HS, Suh YK (2008) LBM simulation on mixing enhancement by the effect of heterogeneous zeta-potential in a microchannel. J Mech Sci Technol 22:1181–1191

    Google Scholar 

  • Kaufman A, Fan Z, Petkov K (2009) Implementing the lattice Boltzmann model on commodity graphics hardware. J Stat Mech Theory Exp. doi:10.1088/1742-5468/2009/06/P06016

    MATH  Google Scholar 

  • Kim SH, Pitsch H, Boyd ID (2008) Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers. J Comput Phys 227:8655–8671

    MATH  Google Scholar 

  • Klar A, Seaid M, Thommes G (2008) Lattice Boltzmann simulation of depth-averaged models in flow hydraulics. Int J Comput Fluid Dyn 22:507–522

    MATH  Google Scholar 

  • Koido T, Furusawa T, Moriyama K (2008) An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell. J Power Sour 175:127–136

    Google Scholar 

  • Korner C, Thies M, Hofmann T, Thurey N, Rude U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121:179–196

    MathSciNet  Google Scholar 

  • Krafczyk M, Cerrolaza M, Schulz M, Rank E (1998) Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods. J Biomech 31:453–462

    Google Scholar 

  • Krishnamurthy S, Yadav A, Phelan PE, Calhoun R, Vuppu AK, Hayes AAGMA (2008) Dynamics of rotating paramagnetic particle chains simulated by particle dynamics, stokesian dynamics and lattice Boltzmann methods. Microfluid Nanofluid 5:33–41

    Google Scholar 

  • Kusumaatmaja H, Leopoldes J, Dupuis A, Yeomans JM (2006) Drop dynamics on chemically patterned surfaces. Europhys Lett 73:740–746

    Google Scholar 

  • Kusumaatmaja H, Pooley CM, Girardo S, Pisignano D, Yeomans JM (2008) Capillary filling in patterned channels. Phys Rev E 77:067301

    Google Scholar 

  • Kuznik F, Obrecht C, Rusaouen G, Roux J-J (2010) LBM based flow simulation using GPU computing processor. Comput Math Appl. doi:10.1016/j.camwa.2009.08.052

  • Ladd A (1994a) Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 2. Numerical results. J Fluid Mech 271:311–339

    MathSciNet  Google Scholar 

  • Ladd AJC (1994b) Numerical simulations of particulate suspensions via a discretized Boltzmann-equation i: theoretical foundation. J Fluid Mech 271:285–309

    MATH  MathSciNet  Google Scholar 

  • Ladd AJC, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104:1191–1251

    MATH  MathSciNet  Google Scholar 

  • Lai Y, Lin C, Huang J (2001) Accuracy and efficiency study of lattice Boltzmann method for steady-state flow simulations. Numer Heat Transf B 39:21–43

    Google Scholar 

  • Lallemand P, Luo L (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61:6546–6562

    MathSciNet  Google Scholar 

  • Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, New York

  • Le G, Zhang J (2009) Boundary slip from the immersed boundary lattice Boltzmann models. Phys Rev E 79:026701

    Google Scholar 

  • Lee T, Lin CL (2005a) Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel. Phys Rev E 71:046706

    Google Scholar 

  • Lee T, Lin C-L (2005b) A stable discretization of the lattice Boltzmann equation method for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206:16–47

    MATH  MathSciNet  Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics. Springer

  • Li H, Fang H (2009) Lattice Boltzmann simulation of electrowetting. Eur Phys J Special Top 171:129–133

    Google Scholar 

  • Li B, Kwok DY (2003) Lattice Boltzmann model of microfluidics in the presence of external forces. J Colloid Interface Sci 263:144–151

    Google Scholar 

  • Li B, Kwok DY (2004) Electrokinetic microfluidic phenomena by a lattice Boltzmann model using a modified Poisson-Boltzmann equation with an excluded volume effect. J Chem Phys 120:947–953

    Google Scholar 

  • Li S, Tafti DK (2007) A mean-field pressure formulation for liquid-vapor flows. J Fluids Eng Trans ASME 129:894–901

    Google Scholar 

  • Li Q, Wagner AJ (2007) Symmetric free-energy-based multicomponent lattice Boltzmann method. Phys Rev E 76:036701

    Google Scholar 

  • Li H, Fang H, Lin Z, Xu S, Chen S (2004) Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery. Phys Rev E 69:031919

    Google Scholar 

  • Lim C, Shu C, Niu X, Chew Y (2002) Application of lattice Boltzmann method to simulate microchannel flows. Physics of Fluids 14:2299–2308

    Google Scholar 

  • Lin Y, Lee C, Lee G (2008) Droplet formation utilizing controllable moving-wall structures for double-emulsion applications. J Microelectromech Syst 17:573–581

    Google Scholar 

  • Liu C, Ni Y (2008) The effect of surface roughness on rarefied gas flows by lattice Boltzmann method. Chin Phys B 17:4554–4561

    Google Scholar 

  • Liu H, Zhang Y (2009) Droplet formation in a T-shaped microfluidic junction. J Appl Phys 106:034906

    Google Scholar 

  • Liu H, Zhou J, Burrows R (2009) Lattice Boltzmann model for shallow water flows in curved and meandering channels. Int J Comput Fluid Dyn 23:209–220

    MATH  MathSciNet  Google Scholar 

  • Lobaskin V, Dunweg B, Holm C (2004) Electrophoretic mobility of a charged colloidal particle: a computer simulation study. J Phys Condens Matter 16:S4063–S4073

    Google Scholar 

  • Luo L (1998) Unified theory of lattice Boltzmann models for nonideal gases. Phys Rev E 81:1618–1621

    Google Scholar 

  • MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39

    MATH  MathSciNet  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a cd. Ann Rev Biomed Eng 8:601–628

    Google Scholar 

  • Maier R, Bernard RS (2010) Lattice-Boltzmann accuracy in pore-scale flow simulation. J Comput Phys 229:233–255

    MATH  MathSciNet  Google Scholar 

  • Mark D, Metz T, Haeberle S, Lutz S, Ducree J, Zengerle R, von Stetten F (2009) Centrifugo-pneumatic valve for metering of highly wetting liquids on centrifugal microfluidic platforms. Lab Chip 9:3599–3603

    Google Scholar 

  • Martys NS (2001) Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys Fluids 13:1807–1810

    Google Scholar 

  • Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53:743–750

    Google Scholar 

  • Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley

  • Mei R, Luo L, Lallemand P, d‘Humieres D (2006) Consistent initial conditions for lattice Boltzmann simulations. Comput Fluids 35:855–862

    MATH  MathSciNet  Google Scholar 

  • Mei R, Luo L-S, Shyy W (1999) An accurate curved boundary treatment in the lattice Boltzmann method. J Stat Phys 155:307–330

    MATH  Google Scholar 

  • Melchionna S, Succi S (2004) Electrorheology in nanopores via lattice Boltzmann simulation. J Chem Phys 120:4492–4497

    Google Scholar 

  • Meng F, Wang M, Li Z (2008) Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows. Int J Heat Fluid Flow 29:1203–1210

    Google Scholar 

  • Migliorini C, Qian Y, Chen H, Brown E, Jain RK, Munn LL (2002) Red blood cells augment leukocyte rolling in a virtual blood vessel. Biophys J 83:1834–1841

    Google Scholar 

  • Mo GC, Kwok DY (2006) Multiple separation of self-running drops by pinching a three-phase contact line. Appl Phys Lett 88:064103

    Google Scholar 

  • Mugele F, Baret JC (2005) Electrowetting: From basics to applications. J Phys Condens Matter 17:R705–R774

    Google Scholar 

  • Munn LL, Dupin MM (2008) Blood cell interactions and segregation in flow. Ann Biomed Eng 36:534–544

    Google Scholar 

  • Nie X, Boolen GD, Chen S (2002) Lattice-Boltzmann simulations of fluid flows in MEMS. J Stat Phys 107:279–289

    MATH  Google Scholar 

  • Nijmeijer M, Bruin C, Bakker A, Vanleeuwen J (1990) Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation. Phys Rev A 42:6052–6059

    Google Scholar 

  • Nisar A, AftuIpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130:917–942

    Google Scholar 

  • Niu X, Shu C, Chew Y (2004) A lattice Boltzmann BGK model for simulation of micro flows. Europhys Lett 67:600–606

    Google Scholar 

  • Niu X, Shu C, Chew Y, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354:173–182

    MATH  Google Scholar 

  • Niu X, Munekata T, Hyodo S, Suga K (2007) An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. J Power Sour 172:542–552

    Google Scholar 

  • Ouared R, Chopard B (2005) Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes. J Stat Phys 121:209–221

    MATH  MathSciNet  Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38

    Google Scholar 

  • Park J, Matsubara M, Li X (2007) Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell. J Power Sour 173:404–414

    Google Scholar 

  • Pattison MJ, Premnath KN, Morley NB, Abdouc MA (2008) Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications. Fusion Eng Des 83:557–572

    Google Scholar 

  • Peng Y, Shu C, Chew Y (2003) A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity. J Comput Phys 193:260–274

    Google Scholar 

  • Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252

    MATH  MathSciNet  Google Scholar 

  • Popel AS, Johnson PC (2005) Microcirculation and hemorheology. Ann Rev Fluid Mech 37:43–69

    MathSciNet  Google Scholar 

  • Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D (2005) 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38:543–549

    Google Scholar 

  • Porter ML, Schaap MG, Wildenschild D (2009) LatticeBoltzmann simulations of the capillary pressuresaturationinterfacial area relationship for porous media. Adv Water Resour 32:1632–1640

    Google Scholar 

  • Qin RS (2006) Mesoscopic interparticle potentials in the lattice Boltzmann equation for multiphase fluids. Phys Rev E 73:066703

    Google Scholar 

  • Qin RS (2007) Bubble formation in lattice Boltzmann immiscible shear flow. J Chem Phys 126:114506

    Google Scholar 

  • Qian S, Bau H (2009) Magneto-hydrodynamics based microfluidics. Mech Res Commun 36:10–21

    Google Scholar 

  • Qian Y, d‘Humieres D, Lallemand P (1992) Lattice BGK models for Navier-Stokes equation. Europhys Lett 17:479–484

    MATH  Google Scholar 

  • Raabe D (2004) Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Model Simul Mater Sci Eng 12:R13–R46

    Google Scholar 

  • Raiskinmaki P, Koponen A, Merikoski J, Timonen J (2000) Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Comput Mater Sci 18:7–12

    Google Scholar 

  • Raiskinmaki P, Shakib-Manesh A, Jasberg A, Koponen A, Merikoski J, Timonen J (2002) Lattice-Boltzmann simulation of capillary rise dynamics. J Stat Phys 107:143–158

    Google Scholar 

  • Ramaswamy S, Gupta M, Goel A, Aaltosalmi U, Kataja M, Koponen A, Ramarao BV (2004) The 3D structure of fabric and its relationship to liquid and vapor transport. Colloids Surf A 241:323–333

    Google Scholar 

  • Reese JM, Zhang Y (2009) Simulating fluid flows in micro and nano devices: the challenge of non-equilibrium behavior. J Comput Theor Nanosci 6:2061–2074

    Google Scholar 

  • Reis T, Phillips TN (2007) Modified lattice Boltzmann model for axisymmetric flows. Phys Rev E 75:056703

    MathSciNet  Google Scholar 

  • Reneman RS, Arts T, Hoeks APG (2006) Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Vescular Res 43:251–269

    Google Scholar 

  • Roohi E, Darbandi M, Mirjalili V (2009) Direct simulation monte carlo solution of subsonic flow through micro/nanoscale channels. J Heat Transfer Trans ASME 131:092402

    Google Scholar 

  • Rowlinson J, Widom B (1982) Molecular theory of capillary. Claredon, Oxford

    Google Scholar 

  • Sankaranarayanan K, Shan X, Kevrekidis IG, Sundaresan S (1999) Bubble flow simulations with the lattice Boltzmann method. Chem Eng Sci 54:4817–4823

    Google Scholar 

  • Sbragaglia M, Succi S (2005) Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Phys Fluids 17:093602

    Google Scholar 

  • Sbragaglia M, Benzi R, Biferale L, Succi S, Toschi F (2006) Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows. Phys Rev Lett 97:204503

    Google Scholar 

  • Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F (2007) Generalized lattice Boltzmann method with multirange pseudopotential. Phys Rev E 75:026702

    MathSciNet  Google Scholar 

  • Sbragaglia M, Chen H, Shan X, Succi S (2009) Continuum free-energy formulation for a class of lattice Boltzmann multiphase models. EPL 86:24005

    Google Scholar 

  • Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Ann Rev Fluid Mech 31:567–603

    MathSciNet  Google Scholar 

  • Schulz M, Krafczyk M, Tolke J, Rank E (2002) Parallelization strategies and efficiency of CFD computations in complex geometries using lattice Boltzmann methods on high-performance computers. Lect Notes Comput Sci Eng 21:115–122

    Google Scholar 

  • Sehgal BR, Nourgaliev RR, Dinh TN (1999) Numerical simulation of droplet deformation and break-up by lattice-Boltzmann method. Prog Nuclear Energy 34:471–488

    Google Scholar 

  • Sethian JA, Smereka P (2003) Level set methods for fluid interfaces. Ann Rev Fluid Mech 35:341–372

    MathSciNet  Google Scholar 

  • Shan X (1997) Simulation of Rayleigh–Benard convection using a lattice Boltzmann method. Phys Rev E 55:2780

    Google Scholar 

  • Shan X (2008) Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys Rev E 77:066702

    Google Scholar 

  • Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819

    Google Scholar 

  • Shan X, Chen H (1994) Simulation of nonideal gases and liquid-gas phase-transitions by the lattice Boltzmann-equation. Phys Rev E 49:2941–2948

    Google Scholar 

  • Shan X, Doolen G (1995) Multicomponent lattice-Boltzmann model with interparticle interaction. J Stat Phys 81:379–393

    MATH  MathSciNet  Google Scholar 

  • Shan X, Yuan X, Chen H (2006) Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J Fluid Mech 550:413–441

    MATH  MathSciNet  Google Scholar 

  • Shi B, Deng B, Du R, Chen X (2008a) A new scheme for source term in LBGK model for convection-diffusion equation. Comput Math Appl 55:1568–1575

    MATH  MathSciNet  Google Scholar 

  • Shi Y, Zhao T, Guo Z (2008b) Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer. Int J Heat Mass Transf 51:586–596

    MATH  Google Scholar 

  • Sinha PK, Mukherjee PP, Wang C (2007) Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells. J Mater Chem 17:3089–3103

    Google Scholar 

  • Skordos PA (1993) Initial and boundary-conditions for the lattice Boltzmann method. Phys Rev E 48:4823–4842

    MathSciNet  Google Scholar 

  • Sofonea V, Fruh WG (2001) Lattice Boltzmann model for magnetic fluid interfaces. Eur Phys J B 20:141–149

    Google Scholar 

  • Sofonea V, Fruh WG, Cristea A (2002) Lattice Boltzmann model for the simulation of interfacial phenomena in magnetic fluids. J Magn Magn Mater 252:144–146

    Google Scholar 

  • Sofonea V, Sekerka RF (2005) Diffuse-reflection boundary conditions for a thermal lattice Boltzmann model in two dimensions: evidence of temperature jump and slip velocity in microchannels. Phys Rev E 71:066709

    Google Scholar 

  • Sterling JD, Chen S (1996) Stability analysis of lattice Boltzmann methods. J Comput Phys 123:196–206

    MATH  Google Scholar 

  • Stoltz J, Singh M, Riha P (1999) Hemorheology in practice. IOS Press, Amsterbam

    Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Succi S (2002) Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Phys Rev Lett 89:064502

    Google Scholar 

  • Succi S, Vergassola M, Benzi R (1991) Lattice Boltzmann scheme for 2-dimensional magnetohydrodynamics. Phys Rev A 43:4521–4524

    Google Scholar 

  • Sui Y, Low HT, Chew YT, Roy P (2008) Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow. Phys Rev E 77:016310

    Google Scholar 

  • Sukop MC, Thorne DT Jr (2006) Lattice Boltzmann modeling. Springer, Delft

    Google Scholar 

  • Sullivan DE (1981) Surface tension and contact angle of a liquid-solid interface. J Chem Phys 74:2604–2615

    Google Scholar 

  • Suzue Y, Shikazono N, Kasagi N (2008) Micro modeling of solid oxide fuel cell anode based on stochastic reconstruction. J Power Sour 184:52–59

    Google Scholar 

  • Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833

    Google Scholar 

  • Swift M, Orlandini E, Osborn W, Yeomans J (1996) Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys Rev E 54:5041–5052

    Google Scholar 

  • Tabe Y, Lee Y, Chikahisa T, Kozakai M (2009) Numerical simulation of liquid water and gas flow in a channel and a simplified gas diffusion layer model of polymer electrolyte membrane fuel cells using the lattice Boltzmann method. J Power Sour 193:24–31

    Google Scholar 

  • Tang G, Tao W, He Y (2005) Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys Rev E 17:058101

    Google Scholar 

  • Tang G, Li Z, He Y, Zhao C, Tao W (2007a) Experimental observations and lattice Boltzmann method study of the electroviscous effect for liquid flow in microchannels. J Micromech Microeng 17:539–550

    Google Scholar 

  • Tang G, Tao W, He Y (2007b) Simulating two- and three-dimensional microflows by the lattice Boltzmann method with kinetic boundary conditions. Int J Modern Phys C 18:805–817

    MATH  Google Scholar 

  • Tang G, Gu X, Barber RW, Emerson DR (2008) Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Phys Rev E 78:026706

    Google Scholar 

  • Teh S, Lin R, Hung L, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Google Scholar 

  • Tian F, Kwok DY (2005) On the surface conductance, flow rate and current continuities of microfluidics with non-uniform surface potentials. Langmuir 21:2192–2198

    Google Scholar 

  • Tian F, Li B, Kwok DY (2005) Trade-off between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials. Langmuir 21:1126–1131

    Google Scholar 

  • Tolke J, Krafczyk M (2008) TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int J Comput Fluid Dyn 22:443–456

    Google Scholar 

  • Tomiyasu J, Inamuro T (2009) Numerical simulations of gas-liquid two-phase flows in a micro porous structure. Eur Phys J Special Top 171:123–127

    Google Scholar 

  • Toolke J, Freudiger S, Krafczyk M (2006) An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput Fluids 35:820–830

    Google Scholar 

  • Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9–L12

    Google Scholar 

  • Tu J, Yeoh GH, Lin C (2007) Computational fluid dynamics: a practical approach. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Ubertini S, Succi S (2005) Recent advances of lattice Boltzmann techniques on unstructured grids. Progr Comput Dyn 5:85–96

    MathSciNet  Google Scholar 

  • Upreti SR, Lohi A, Kapadia RA, El-Haj R (2007) Vapor extraction of heavy oil and bitumen:a review. Energy Fuels 21:1562–1574

    Google Scholar 

  • van der Graaf S, Nisisako T, Schroen C, van der Sman R, Boom R (2006) Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22:4144–4152

    Google Scholar 

  • Verberg R, Pooley CM, Yeomans JM, Balazs AC (2004) Pattern formation in binary fluids confined between rough, chemically heterogeneous surfaces. Phys Rev Lett 93:184501

    Google Scholar 

  • Verhaeghe F, Luo L, Blanpain B (2009) Lattice Boltzmann modeling of microchannel flow in slip flow regime. J Comput Phys 228:147–157

    MATH  MathSciNet  Google Scholar 

  • Voronov RS, Papavassiliou DV, Lee LL (2007) Slip length and contact angle over hydrophobic surfaces. Chem Phys Lett 441:273–276

    Google Scholar 

  • Wagner AJ, Yeomans JM (1999) Phase separation under shear in two-dimensional binary fluids. Phys Rev E 59:4366–4373

    Google Scholar 

  • Wang M, Chen S (2007) Electroosmosis in homogeneously charged micro- and nanoscale random porous media. J Colloid Interface Sci 314:264–273

    Google Scholar 

  • Wang M, Kang Q (2009) Electrokinetic transport in microchannels with random roughness. Anal Chem 81:2953–2961

    Google Scholar 

  • Wang M, Kang Q (2010a) Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. J Comput Phys 229:728–744

    MATH  MathSciNet  Google Scholar 

  • Wang W, Kang Q (2010b) Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluid Nanofluid. doi:10.1007/s10404-009-0530-6 (in press)

  • Wang M, Pan N (2008) Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng R 63:1–30

    Google Scholar 

  • Wang J, Wang M, Li Z (2005) Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels. Modern Phys Lett B 19:1515–1518

    MATH  Google Scholar 

  • Wang J, Wang M, Li Z (2006) Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. J Colloid Interface Sci 296:729–736

    Google Scholar 

  • Wang J, Wang M, Li Z (2007a) A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer. Int J Therm Sci 46:228–234

    Google Scholar 

  • Wang M, Pan N, Wang J, Chen S (2007b) Lattice Poisson-Boltzmann simulations of electroosmotic flows in charged anisotropic porous media. Commun Comput Phys 2:1055–1070

    Google Scholar 

  • Wang M, Wang J, Chen S (2007c) Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods. J Comput Phys 226:836–851

    MATH  Google Scholar 

  • Warren RB (1997) Electroviscous transport problems via lattice-Boltzmann. Int J Modern Phys C 8:889–898

    Google Scholar 

  • Weigl BH, Yager P (1999) Microfluidics: microfluidic diffusion-based separation and detection. Science 15:346–347

    Google Scholar 

  • Widom B (1978) Structure of interfaces from uniformity of the chemical potential. J Stat Phys 19:563–574

    Google Scholar 

  • Wolf FG, dos Santos LOE, Philippi PC (2009) Modeling and simulation of the fluid–solid interaction in wetting. J Stat Mech Theory Exp. doi:10.1088/1742-5468/2009/06/P06008

    Google Scholar 

  • Wolf FG, dos Santos LOE, Philippi PC (2010) Capillary rise between parallel plates under dynamic conditions. J Colloid Interface Sci 344:171–179

    Google Scholar 

  • Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, Berlin

    MATH  Google Scholar 

  • Wu H, Huang Y, Wu C, Lee G (2009) Exploitation of a microfluidic device capable of generating size-tunable droplets for gene delivery. Microfluid Nanofluid 7:45–56

    Google Scholar 

  • Xiong W, Zhang J (2010a) Shear stress variation induced by red blood cell motion in microvessel. Ann Biomed Eng. doi:10.1007/s10439–010–0017–3 (in press)

  • Xiong W, Zhang J (2010b) A two-dimensional lattice Boltzmann model for uniform channel flows. Comput Math Appl. doi:10.1016/j.camwa.2010.02.040 (in press)

  • Xu K, Li Z (2004) Microchannel flow in the slip regime: gas-kinetic bgk-burnett solutions. J Fluid Mech 513:87–110

    MATH  MathSciNet  Google Scholar 

  • Yamaguchi Y, Honda T, Briones MP, Yamashita K, Miyazaki M, Nakamura H, Maeda H (2007) Influence of gravity on two-layer laminar flow in a microchannel. Chem Eng Technol 30:379–382

    Google Scholar 

  • Yan YY, Zu YQ, Ren LQ, Li JQ (2007) Numerical modelling of electro-osmotically driven flow within the microthin liquid layer near an earthworm surface—a biomimetic approach. Proc Inst Mech Eng C 221:1201–1210

    Google Scholar 

  • Yang J, Kwok DY (2003) Microfluid flow in circular microchannel with electrokinetic effect and Navier’s slip condition. Langmuir 19:1047–1053

    Google Scholar 

  • Yang AJM, Fleming PD, Gibbs JH (1976) Molecular theory of surface tension. J Chem Phys 64:3732–3747

    Google Scholar 

  • Yang Z, Dinh TN, Nourgaliev RR, Sehgal BR (2000) Numerical investigation of bubble coalescence characteristics under nucleate boiling condition by a lattice-Boltzmann model. Int J Therm Sci 39:1–17

    MATH  Google Scholar 

  • Yang J, Lu F, Kostiuk LW, Kwok DY (2003) Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng 13:963–970

    Google Scholar 

  • Yoshino M, Matsuda Y, Shao C (2004) Comparison of accuracy and efficiency between the lattice Boltzmann method and the finite difference method in viscous/thermal fluid flows. Int J Comput Fluid Dyn 18:333–345

    MATH  MathSciNet  Google Scholar 

  • Yu D, Mei R, Shyy W (2005) Improved treatment of the open boundary in the method of lattice Boltzmann equation. Progr Comput Fluid Dyn 5:3–12

    Google Scholar 

  • Yuan P, Schaefer L (2006) Equations of state in a lattice Boltzmann model. Phys Fluids 18:042101

    MathSciNet  Google Scholar 

  • Zagnoni M, Baroud CN, Cooper JM (2009) Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Phys Rev E 80:046303

    Google Scholar 

  • Zeiser T, Bashoor-Zadeh M, Darabi A, Baroud G (2008) Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation. Proc Inst Mech Eng H 222:185–194

    Google Scholar 

  • Zhang J, Kwok DY (2004a) Apparent slip over a solid-liquid interface with a no-slip boundary condition. Phys Rev E 70:056701

    Google Scholar 

  • Zhang J, Kwok DY (2004b) Lattice Boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces. Langmuir 20:8137–8141

    Google Scholar 

  • Zhang J, Kwok DY (2005a) A 2D lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory. J Comput Phys 206:150–161

    MATH  Google Scholar 

  • Zhang J, Kwok DY (2005b) On the validity of the Cassie equation via a mean-field free-energy lattice Boltzmannapproach. J Colloid Interface Sci 282:434–438

    Google Scholar 

  • Zhang J, Kwok DY (2006a) Contact line and contact angle dynamics in superhydrophobic channels. Langmuir 22:4998–5004

    Google Scholar 

  • Zhang J, Kwok DY (2006b) Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows. Phys Rev E 73:047702

    Google Scholar 

  • Zhang J, Kwok DY (2009) A mean-field free energy lattice Boltzmann model for multicomponent fluids. Eur Phys J Special Top 171:45–53

    Google Scholar 

  • Zhang J, Kwok DY (2010) Roughness effects on continuous and discrete flows in superhydrophobic microchannels. Commun Comput Phys (submitted)

  • Zhang J, Tian F (2008) A bottom-up approach to non-ideal fluids in the lattice Boltzmann method. Europhys Lett 81:66005

    Google Scholar 

  • Zhang J, Li B, Kwok DY (2004) Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces. Phys Rev E 69:032602

    Google Scholar 

  • Zhang Y, Qin R, Emerson DR (2005a) Lattice Boltzmann simulation of rarefied gas flows in microchannels. Phys Rev E 71:047702

    Google Scholar 

  • Zhang Y, Qin R, Sun Y, Barber RW, Emerson DR (2005b) Gas flow in microchannels—a lattice Boltzmann method approach. J Stat Phys 121:257–267

    MATH  MathSciNet  Google Scholar 

  • Zhang R, Shan X, Chen H (2006) Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation. Phys Rev E 74:046703

    Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4:285–295

    Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2008) Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech 41:47–55

    Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2009a) Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc Res 77:265–272

    Google Scholar 

  • Zhang J, Li B, Kwok DY (2009b) Metastable contact angles and self-propelled drop movement on chemically heterogeneous surfaces by a mean-field lattice Boltzmann model. Eur Phys J Special Top 171:73–79

    Google Scholar 

  • Zhang J, Liu Y, Zhang J, Yang J (2009c) Study of force-dependent and time-dependent transition of secondary flow in a rotating straight channel by the lattice Boltzmann method. Phys A 388:288–294

    Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2010) Simulating microscopic hemodynamics and hemorheology with the immersed-boundary lattice-Boltzmann method. In: Pozrikidis C (ed) Computational hydrodynamics of capsules and biological cells. CRC, Boca Raton

  • Zheng HW, Shu C, Chew YT (2006) A lattice Boltzmann model for multiphase flows with large density ratio. J Comput Phys 218:353–371

    MATH  MathSciNet  Google Scholar 

  • Zhu Y, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88:106102

    Google Scholar 

  • Zhu L, Tretheway D, Petzold L, Meinhart C (2005) Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method. J Comput Phys 202:181–195

    MATH  MathSciNet  Google Scholar 

  • Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9:1591

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Laurentian University Research Fund (LURF). The author acknowledges the helpful discussion with Prof. Donald E. Sullivan at University of Guelph. The author also thanks the anonymous reviewers for their critical comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J. Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10, 1–28 (2011). https://doi.org/10.1007/s10404-010-0624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0624-1

Keywords

Navigation