Skip to main content
Log in

Analytical formulation of electric field and dielectrophoretic force for moving dielectrophoresis using Fourier series

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Electrokinetics manipulation and separation of living cells employing microfluidic devices require good knowledge of the strength and distribution of electric field in such devices. AC dielectrophoresis is performed by generating non-uniform electric field using microsize electrodes. Among the several applications of dielectrophoretic phenomenon, this present study considers the recently introduced phenomenon of moving dielectrophoresis. An analytical solution using Fourier series is presented for the electric field distribution and dielectrophoretic force generated inside a microchannel. The potential at the upper part of the microchannel has been found by solving the governing equation of the electric potential with specific boundary conditions. The solutions for the electric field and dielectrophoretic force show excellent agreement with the numerical results. Microdevices were fabricated and experiments were carried out with living cells confirming and validating the analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Chang DE, Loire S et al (2003) Closed-form solutions in the electrical field analysis. J Phys D Appl Phys 36:3073–3078

    Article  Google Scholar 

  • Chen DF, Du H et al (2005) Numerical modeling of dielectrophoresis using a meshless approach. J Micromech Microeng 15:1040–1048

    Article  Google Scholar 

  • Clague DS, Wheeler EK (2001) Dielectrophoretic manipulation of macromolecules: the electric field. Phys Rev E 64(2):26605

    Article  Google Scholar 

  • Doh I, Cho YH (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A 121(1):59–65

    Article  Google Scholar 

  • Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983

    Article  Google Scholar 

  • Gascoyne PRC, Wang XB et al (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33(3):670–678

    Article  Google Scholar 

  • Green NG, Ramos A et al (2002) Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J Electrostat 56(2):235–254

    Article  Google Scholar 

  • Holmes D, Green NG et al (2003) Microdevices for dielectrophoretic flow-through cell separation. Eng Med Biol Mag, IEEE 22(6):85–90

    Article  Google Scholar 

  • Huang Y, Holzel RP (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37(7):1499–1517

    Article  Google Scholar 

  • Huang Y, Joo S et al (1997) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Biochim Biophys Acta 1323:240–252

    Article  Google Scholar 

  • Kua CH, Lam YC et al (2007) Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal Chem 79:6975–6987

    Article  Google Scholar 

  • Kua CH, Lam YC et al (2008a) Cell motion model for moving dielectrophoresis. Anal Chem 80:5454–5461

    Article  Google Scholar 

  • Kua CH, Lam YC et al (2008b) Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. J Electrostat 66:514–525

    Article  Google Scholar 

  • Li H, Bashir R (2002) Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens Actuators B 86(2–3):215–221

    Article  Google Scholar 

  • Markx GH, Huang Y et al (1994) Dielectrophoretic characterization and separation of micro-organisms. Microbiology 140(3):585–591

    Article  Google Scholar 

  • Morgan H, Izquierdo AG et al (2001a) The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J Phys D Appl Phys 34(10):1553–1561

    Article  Google Scholar 

  • Morgan H, Izquierdo AG et al (2001b) The dielectrophoretic and travelling wave forces for interdigitated electrode arrays: analytical solution using Fourier series. J Phys D Appl Phys 34:1553–1561

    Article  Google Scholar 

  • Multiphysics C (2006) COMSOL Multiphysics

  • Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15(10):426–432

    Article  Google Scholar 

  • Pethig R, Wang XB et al (1992) Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes. J Phys D Appl Phys 25:881–888

    Article  Google Scholar 

  • Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge; New York

    Google Scholar 

  • Sun T, Morgan H et al (2007) Analytical solutions of Ac electrokinetics in interdigitated electrode arrays: electric field, dielectrophoretic and traveling-wave dielectrophoretic forces. Phys Rev E 76(4):1–18

    Google Scholar 

  • Sun T, Morgan H et al (2008) Analytical solutions of the dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays. The 12th international conference on electrostatics. Institute of Physics Publishing, Oxford, UK

  • Wang X, Wang XB et al (1996) A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green’s theorem. J Phys D Appl Phys 29:1649–1660

    Article  Google Scholar 

  • Wang XB, Yang J et al (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72(4):832–839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Alazzam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alazzam, A., Roman, D., Nerguizian, V. et al. Analytical formulation of electric field and dielectrophoretic force for moving dielectrophoresis using Fourier series. Microfluid Nanofluid 9, 1115–1124 (2010). https://doi.org/10.1007/s10404-010-0632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0632-1

Keywords

Navigation