Skip to main content
Log in

Aqueous droplet manipulation by optically induced Marangoni circulation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The manipulation of picoliter droplets is demonstrated using optically induced microscale circulatory flows. The circulation results from Marangoni effects induced by optical heating from light patterns created by a computer projector. Manipulation of single droplets and parallel manipulation of multiple droplets are achieved with induced forces of up to 1 nN and an average resolution of 146.5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Basu AS, Gianchandani YB (2009) A programmable array for contact-free manipulation of floating droplets on featureless substrates by the modulation of surface tension. J Microelectromech Syst 18(6):1163–1172

    Article  Google Scholar 

  • Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Chiou PY, Park SY, Wu MC (2008) Continuous optoelectrowetting for picoliter droplet manipulation. Appl Phys Lett 93(22):221110

    Article  Google Scholar 

  • Choi CH, Jung JH, Rhee Y, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdev 9(6):855–862

    Article  Google Scholar 

  • COMSOL Multiphysics (2008) Marangoni circulation, COMSOL Multiphysics User Manual. pp 391-402

  • Cordero ML, Bumham DR, Baroud CN, McGloin D (2008) Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball. Appl Phys Lett 93(3):034107

    Article  Google Scholar 

  • Cordero ML, Rolfsnes HO, Burnham DR, Campbell PA, McGloin D, Baroud CN (2009) Mixing via thermocapillary generation of flow patterns inside a microfluidic drop. New J Phys 11(9):075033

    Article  Google Scholar 

  • Cygan ZT, Cabral JT, Beers KL, Amis EJ (2005) Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21(8):3629–3634

    Article  Google Scholar 

  • Darhuber AA, Valentino JP, Davis JM, Troian SM, Wagner S (2003) Microfluidic actuation by modulation of surface stresses. Appl Phys Lett 82(4):657–659

    Article  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  Google Scholar 

  • Dixit SS, Kim H, Vasilyev A, Eid A, Faris GW (2010) Light-driven formation and rupture of droplet bilayers. Langmuir 26(9):6193–6200

    Article  Google Scholar 

  • Emilie V, Cordero ML, Gallaire F, Baroud CN (2009) Laser-induced force on a microfluidic drop: origin and magnitude. Langmuir 25(9):5127–5134

    Article  Google Scholar 

  • Eötvös R (1886) Ueber den zusammenhang der oberflächenspannung der flüssigkeiten mit ihrem molecularvolumen. Ann Phys 263(3):448–459

    Google Scholar 

  • Farahi RH, Passian A, Ferrell TL, Thundat T (2005) Marangoni forces created by surface plasmon decay. Opt Lett 30(6):616–618

    Article  Google Scholar 

  • Farahi RH, Rassian A, Zahrai S, Lereu AL, Ferrell TL, Thundat T (2006) Microscale Marangoni actuation: all-optical and all-electrical methods. Ultramicroscopy 106:815–821

    Article  Google Scholar 

  • Higuera FJ (2000) Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above. Phys Fluids 12(9):2186–2197

    Article  MathSciNet  Google Scholar 

  • Holden MA, Needham D, Bayley H (2007) Functional bionetworks from nanoliter water droplets. J Am Chem Soc 129(27):8650–8655

    Article  Google Scholar 

  • Holtze C, Rowat AC, Agresti JJ, Hutchison JB, Angilè FE, Schmitz CHJ, Köster S et al (2008) Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8(10):1632–1639

    Article  Google Scholar 

  • Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10(3):274–280

    Article  Google Scholar 

  • Kotz KT, Noble KA, Faris GW (2004) Optical microfluidics. Appl Phys Lett 85(13):2658–2660

    Article  Google Scholar 

  • Lereu AL, Passian A, Farahi RH, Zahrai S, Thundat T (2006) Plasmonic Marangoni forces. J Eur Opt Soc Rapid Publ 1:06030

    Article  Google Scholar 

  • Luo C, Yang X, Fu Q, Sun M, Ouyang Q, Chen Y, Ji J (2006) Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation. Electrophoresis 27(10):1977–1983

    Article  Google Scholar 

  • Neale SL, Ohta AT, Hsu HY, Valley JK, Jamshidi A, Wu MC (2009) Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells. Opt Express 17(7):5232–5239

    Article  Google Scholar 

  • Palit R (1956) Thermodynamic interpretation of the Eötvös constant. Nature 177(4521):1180

    Article  Google Scholar 

  • Park SY, Pan CL, Wu TH, Kloss C, Kalim S et al (2008) Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium. Appl Phys Lett 92(15):151101

    Article  Google Scholar 

  • Park S, Teitell MA, Chiou PY (2010) Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab Chip 10(13):1655–1661

    Article  Google Scholar 

  • Passian A, Zahrai S, Lereu AL, Farahi RH, Ferrell TL, Thundat T (2006) Nonradiative surface plasmon assisted microscale Marangoni forces. Phys Rev E 73(6):066311

    Article  Google Scholar 

  • Schwartz JA, Vykoukal JV, Gascoyne PRC (2004) Droplet-based chemistry on a programmable micro-chip. Lab Chip 4(1):11–17

    Article  Google Scholar 

  • Selva B, Miralles V, Cantat I, Jullien MC (2010) Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping. Lab Chip 10(14):1835–1840

    Article  Google Scholar 

  • Solvas XCI, Srisa-Art M, Demello AJ et al (2010) Mapping of fluidic mixing in microdroplets with 1 μs time resolution using fluorescence lifetime imaging. Anal Chem 82(9):3950–3956

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45(44):7336–7356

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids: the science and application of droplets in microfluidic devices. Lab Chip 4(4):310–315

    Article  Google Scholar 

  • Zagnoni M, Cooper JM (2010) A microdroplet-based shift register. Lab Chip 10(22):3069

    Article  Google Scholar 

  • Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710

    Article  Google Scholar 

  • Zuo YY, Do C, Neumann AW (2007) Automatic measurement of surface tension from noisy images using a component labeling method. Colloids Surf A 299:109–116

    Article  Google Scholar 

Download references

Acknowledgments

This project is funding in part by the National Science Foundation, grant number EEC09-26632. The authors would like to thank Dr. Yi Zuo for assistance with surface tension measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron T. Ohta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Ohta, A.T. Aqueous droplet manipulation by optically induced Marangoni circulation. Microfluid Nanofluid 11, 307–316 (2011). https://doi.org/10.1007/s10404-011-0797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0797-2

Keywords

Navigation