Skip to main content
Log in

Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this work, fabrication and testing of an optofluidic microsystem exploiting high aspect-ratio, vertical, silicon/air one-dimensional (1D) photonic crystals (PhC) are reported. The microsystem is composed of an electrochemically micromachined silicon substrate integrating a 1D PhC featuring high-order bandgaps in the near-infrared region, bonded to a glass cover provided with inlet/outlet holes for liquid injection/extraction in/out the PhC-itself. Wavelength shifts of the reflectivity spectrum of the photonic crystal, in the range 1.0–1.7 μm, induced by flow of different liquids through the PhC air gaps are successfully measured using an in-plane all-fibre setup, thanks to the PhC high aspect-ratio value. Experimental results well agree with theoretical predictions and highlight the good linearity and high sensitivity of such an optofluidic microsystem in measuring refractive index changes. The sensitivity value is estimated to be 1,049 nm/RIU around 1.55 μm, which is among the highest reported in the literature for integrated refractive index sensors, and explained in terms of enhanced interaction between light and liquid within the PhC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barillaro G, Nannini A, Pieri F (2002a) Dimensional constraints on high aspect ratio silicon microstructures fabricated by photoelectrochemical etching. J Electrochem Soc 149(3):C180–C185

    Article  Google Scholar 

  • Barillaro G, Nannini A, Piotto M (2002b) Electrochemical etching in HF solution for silicon micromachining. Sens Actuators A 102(1–2):195–201

    Google Scholar 

  • Barillaro G, Diligenti A, Benedetti M, Merlo S (2006) Silicon micromachined periodic structures for optical applications at 1.55 μm. Appl Phys Lett 89(15):151110–151113

    Google Scholar 

  • Barillaro G, Strambini LM, Merlo S (2008) Bandgap tuning of silicon micromachined 1-D photonic crystals by thermal oxidation. IEEE J Sel Topics Quantum Electron 14(4):1074–1081

    Article  Google Scholar 

  • Barillaro G, Merlo S, Strambini LM (2009a) Optical characterization of alcohol-infiltrated one-dimensional silicon photonic crystals. Opt Lett 34(12):1912–1914

    Article  Google Scholar 

  • Barillaro G, Strambini LM, Annovazzi-Lodi V, Merlo S (2009b) Optical characterization of high-order 1-D silicon photonic crystals. IEEE J Sel Topics Quantum Electron 15(5):1359–1367

    Article  Google Scholar 

  • Barillaro G, Merlo S, Surdo S, Strambini LM, Carpignano F (2010) Optical quality-assessment of high-order one-dimensional silicon photonic crystals with a reflectivity notch at ≈ 1.55 μm. IEEE Photon J 2(6):981–990

    Google Scholar 

  • Chelnokov A, David S, Wang K, Marty F, Lourtioz J-M (2002) Fabrication of 2-D and 3-D silicon photonic crystals by deep etching. IEEE J Sel Topics Quantum Electron 8(4):919–927

    Article  Google Scholar 

  • Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29(10):1093–1095

    Article  Google Scholar 

  • De Stefano L, Rea I, Moretti L, Della Corte FG, Rotiroti L, Alfieri D, Rendina I (2007) An integrated pressure-driven microsystem based on porous silicon for optical monitoring of gaseous and liquid substances. Phys Stat Sol 204(5):1459–1463

    Article  Google Scholar 

  • Grillet C, Monat C, Smith CL, Lee MW, Tomlyenovic-Hanic S, Karnutsch C, Eggleton BJ (2004) Reconfigurable photonic crystal circuits. Laser Photon Rev 4(2):192–204

    Article  Google Scholar 

  • Gruning U, Lehmann V (1996) Two-dimensional infrared photonic crystal based on macroporous silicon. Thin Solid Films 276(1–2):151–154

    Article  Google Scholar 

  • Knowles KM, van Helvoort ATJ (2006) Anodic bonding. Int Mater Rev 51(5):273–311

    Article  Google Scholar 

  • Lee S-K, Park S-G, Moon JH, Yang S-M (2008) Holographic fabrication of photonic nanostructures for optofluidic integration. Lab Chip 8(3):388–391

    Article  Google Scholar 

  • Lehmann V, Foll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 137(2):653–659

    Article  Google Scholar 

  • Lehmann V (1993) The physics of macropore formation in low doped n-type silicon. J Electrochem Soc 140(2):2836–2843

    Article  MathSciNet  Google Scholar 

  • Lipson A, Yeatman EM (2007) A 1-D photonic band gap tunable optical filter in (110) silicon. J Microelectromech Syst 16(3):521–527

    Article  Google Scholar 

  • Mandal S, Goddard JM, Erickson D (2009) A multiplexed optofluidic biomolecular sensor for low mass detection. Lab Chip 9(20):2924–2932

    Article  Google Scholar 

  • Mogensen KB, Kutter JP (2009) Optical detection in microfluidic systems. Electrophoresis 30(1):S92–S100 (and references within it)

    Google Scholar 

  • Monat C, Domachuk P, Eggleton J (2007) Integrated optofluidics: a new river of light. Nat Photon 1:106–114

    Article  Google Scholar 

  • Monat C, Domachuk P, Grillet C, Collins M, Eggleton BJ, Cronin-Golomb M, Mutzenich S, Mahmud T, Rosengarten G, Mitchell A (2008) Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluid Nanofluid 4(1-2):81–85 (and references within it)

    Google Scholar 

  • Nunes PS, Mortensen NA, Kutter JP, Mogensen KB (2008) Photonic crystal resonator integrated in a microfluidic system. Opt Lett 33(14):1623–1625

    Article  Google Scholar 

  • Saadany B, Malak M, Kubota M, Marty F, Mita Y, Khalil D, Bourouina T (2006) Free-space tunable and drop optical filters using vertical bragg mirrors on silicon. IEEE J Sel Topics Quantum Electron 12(6):1480–1488

    Article  Google Scholar 

  • Sakoda K (2005) Optical properties of photonic crystals. Springer, Germany

    Google Scholar 

  • Tolmachev A, Granitsyna LS, Vlasova EN, Volchek BZ, Nashchekin AV, Remenyuk AD, Astrova EV (2002) One-dimensional photonic crystal obtained by vertical anisotropic etching of silicon. Semiconductors 36(8):932–935

    Article  Google Scholar 

  • White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Optics Express 16(2):1020–1028

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by PRIN-MIUR and CARIPLO Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Barillaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barillaro, G., Merlo, S., Surdo, S. et al. Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals. Microfluid Nanofluid 12, 545–552 (2012). https://doi.org/10.1007/s10404-011-0896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0896-0

Keywords

Navigation