Skip to main content
Log in

Fluidic assembly at the microscale: progress and prospects

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Assembly permits the integration of different materials and manufacturing processes to increase system functionality. It is an essential step in the fabrication of useful systems across size scales from buildings to molecules. However, at the microscale, traditional “grasp and release” assembly methods and chemically inspired self-assembly processes are less effective due to scaling effects. Many methods have been developed for improving microscale assembly. Often these methods include fluidic forces or the use a fluidic medium in order to enhance their performance. This paper reviews basic assembly theory and modeling methods. Three basic assembly strategies (tool-directed, process-directed, and part-directed) are proposed for categorizing these methods. It then summarizes progress in using fluidic forces (surface tension, viscous) and external fields (magnetic, electric, light) to aid microscale assembly. Applications of recent advances in both continuous flow and digital microfluidics in microscale assembly are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Adachi E, Dimitrov AS, Nagayama K (1995) Stripe patterns formed on a glass surface during droplet evaporation. Langmuir 11:1057–1060. doi:10.1021/la00004a003

    Google Scholar 

  • Adams JD, Whitney DE (1999) Application of screw theory to constraint analysis of assemblies of rigid parts. In: Proceedings of the IEEE International Symposium on Assembly and Task Planning. IEEE, Porto, Portugal, pp 69–74

  • Arora WJ, Nichol AJ, Smith HI, Barbastathis G (2006) Membrane folding to achieve three-dimensional nanostructures: nanopatterned silicon nitride folded with stressed chromium hinges. Appl Phys Lett 88:1–3

    Article  Google Scholar 

  • Arora WJ, Smith HI, Barbastathis G (2007) Membrane folding by ion implantation induced stress to fabricate three-dimensional nanostructures. Microelectron Eng 84:1454–1458

    Article  Google Scholar 

  • Arscott S, Peytavit E, Vu D et al (2010) Fluidic assembly of hybrid MEMS: a GaAs-based microcantilever spin injector. J Micromech Microeng 20:025023

    Article  Google Scholar 

  • Awtar S, Sevincer E (2006) Elastic averaging in flexure mechanisms: A multi-beam parallelogram flexure case-study. In: 2006 ASME international design engineering technical conferences and computers and information in engineering conference, DETC2006. American Society of Mechanical Engineers, Philadelphia, PA, United States, p 7

  • Azam A, Laflin K, Jamal M, Fernandes R (2011) Self-folding micropatterned polymeric containers. Biomed Microdev 13:51–58. doi:10.1007/s10544-010-9470-x

    Article  Google Scholar 

  • Bae C, Moon J, Shin H et al (2007) Fabrication of monodisperse asymmetric colloidal clusters by using contact area lithography (CAL). J Am Chem Soc 129:14232–14239

    Article  Google Scholar 

  • Bahadur V, Garimella SV (2007) Electrowetting-Based Control of Static Droplet States on Rough Surfaces. Langmuir 23:4918–4924. doi:10.1021/la0631365

    Article  Google Scholar 

  • Bang Y, Lee K, Kook J et al (2005) Micro parts assembly system with micro gripper and RCC unit. IEEE Trans Rob 21:465–470. doi:10.1109/TRO.2004.838028

    Article  Google Scholar 

  • Baret J-C, Kleinschmidt F, El Harrak A, Griffiths AD (2009) Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25:6088–6093. doi:10.1021/la9000472

    Article  Google Scholar 

  • Bernassau AL, Ong C-K, Ma Y et al (2011) Two-dimensional manipulation of micro particles by acoustic radiation pressure in a heptagon cell. IEEE Trans Ultrason Ferroelectr Freq Control 58:2132–2138. doi:10.1109/TUFFC.2011.2062

    Article  Google Scholar 

  • Biganzoli F, Fassi I, Pagano C (2005) Development of a gripping system based on capillary force. (ISATP 2005). In: The 6th IEEE international symposium on assembly and task planning: from nano to macro assembly and manufacturing. IEEE, Montreal, Que., Canada, pp 36–40

  • Bohringer KF, Srinivasan U, Howe RT (2001) Modeling of capillary forces and binding sites for fluidic self-assembly. In: 14th IEEE international conference on micro electro mechanical systems (MEMS 2001), Jan 21–25 2001. Institute of Electrical and Electronics Engineers Inc, Interlaken, Switzerland, pp 369–374

  • Boncheva M, Bruzewicz DA, Whitesides GM (2003) Millimeter-scale self-assembly and its applications. Pure Appl Chem 75:621–630

    Article  Google Scholar 

  • Boothroyd G (2005) Assembly automation and product design. Taylor & Francis, Boca Raton, FL

    Book  Google Scholar 

  • Boothroyd G, Dewhurst P (1990) Product design decisions anticipate robotic assembly. Robot World 8:21–23

    Google Scholar 

  • Boothroyd G, Dewhurst P, Knight WA (2002) Product design for manufacture and assembly. Marcel Dekker/Taylor & Francis, New York

    Google Scholar 

  • Boreyko JB, Chen C-H (2009) Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting. Phys Rev Lett 103:174502

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Whyman G, Erlich M (2007) Resonance Cassie–Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Langmuir 23:12217–12221. doi:10.1021/la7016374

    Article  Google Scholar 

  • Bos EJC, Bullema JE, Delbressine FLM et al (2008) A lightweight suction gripper for micro assembly. Precis Eng 32:100–105. doi:10.1016/j.precisioneng.2007.05.003

    Article  Google Scholar 

  • Bowden N, Arias F, Deng T, Whitesides GM (2001) Self-assembly of microscale objects at a liquid/liquid interface through lateral capillary forces. Langmuir 17:1757–1765

    Article  Google Scholar 

  • Boyse JW (1979) Interference detection among solids and surfaces. Commun ACM 22:3–9. doi:10.1145/359046.359048

    Article  Google Scholar 

  • Brakke K (1992) The surface evolver. Exp Math 1:141

    Article  MathSciNet  MATH  Google Scholar 

  • Brakke K (2008) The surface evolver. http://www.susqu.edu/facstaff/b/brakke/evolver/. http://www.susqu.edu/facstaff/b/brakke/evolver/. Accessed 1 May 2012

  • Breen TL (1999) Design and self-assembly of open, regular, 3D mesostructures. Science 284:948–951

    Article  Google Scholar 

  • Brittain ST, Schueller OJA, Wu H et al (2000) Microorigami: fabrication of small, three-dimensional, metallic structures. J Phys Chem B 105:347–350. doi:10.1021/jp002556e

    Article  Google Scholar 

  • Burgarella S, Merlo S, Dell’Anna B et al (2010) A modular micro-fluidic platform for cells handling by dielectrophoresis. Microelectron Eng 87:2124–2133. doi:10.1016/j.mee.2010.01.013

    Article  Google Scholar 

  • Burmeister F, Schäfle C, Matthes T et al (1997) Colloid monolayers as versatile lithographic masks. Langmuir 13:2983–2987

    Article  Google Scholar 

  • Cannon AH, Hua YM, Henderson CL, King WP (2005) Self-assembly for three-dimensional integration of functional electrical components. J Micromech Microeng 15:2172–2178

    Article  Google Scholar 

  • Cansoy CE, Erbil HY, Akar O, Akin T (2011) Effect of pattern size and geometry on the use of Cassie–Baxter equation for superhydrophobic surfaces. Colloids Surf A 386:116–124

    Article  Google Scholar 

  • Cappelleri DJ, Cheng P, Fink J et al (2011) Automated assembly for mesoscale parts. IEEE Trans Autom Sci Eng 8:598–613. doi:10.1109/TASE.2011.2132128

    Article  Google Scholar 

  • Castellanos A, Ramos A, González A et al (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36:2584–2597. doi:10.1088/0022-3727/36/20/023

    Article  Google Scholar 

  • Cecil J, Vasquez D, Powell D (2005) A review of gripping and manipulation techniques for micro-assembly applications. Int J Prod Res 43:819–828

    Article  Google Scholar 

  • Chase KW, Greenwood WH (1987) Design issues in mechanical tolerance analysis. In: Advanced topics in manufacturing technology: product design, bioengineering, and space commercialization. Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers. ASME, Boston, MA, USA, pp 11–26

  • Chen BK, Zhang Y, Sun Y (2009) Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J Microelectromech Syst 18:652–659. doi:10.1109/JMEMS.2009.2020393

    Article  Google Scholar 

  • Chen T, Chen L, Sun L et al (2010a) Micro manipulation based on adhesion control with compound vibration BT. In: 23rd IEEE/RSJ 2010 international conference on intelligent robots and systems, IROS 2010, October 18, 2010–October 22, 2010. IEEE Computer Society, Robotics and Microsystems Center, Soochow University, Suzhou 215021, China, pp 6137–6142

  • Chen T, Sun L, Chen L et al (2010b) A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens Actuators A 158:320–327. doi:10.1016/j.sna.2010.01.001

    Article  Google Scholar 

  • Chung SE, Park W, Shin S et al (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7:581–587

    Article  Google Scholar 

  • Chung SE, Jung Y, Kwon S (2011) Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics. Small (Weinheim an der Bergstrasse, Germany) 7:796–803

    Article  Google Scholar 

  • Clark TD, Ferrigno R, Tien J et al (2002) Template-directed self-assembly of 10-μm-sized hexagonal plates. J Am Chem Soc 124:5419–5426. doi:10.1021/ja020056o

    Article  Google Scholar 

  • Cohn M (1997) Assembly techniques for microelectromechanical systems. PhD Thesis, University of California, Berkeley

  • Conant-Pablos SE, Martinez-Alfaro H, Ikeuchi K (2003) Sensing requirements for robotic assembly from an analysis of critical contact transitions. In: System security and assurance, Oct 5–8 2003. Institute of Electrical and Electronics Engineers Inc, Washington, DC, United States, pp 1834–1839

  • Copeland MF, Weibel DB (2009) Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter 5:1174. doi:10.1039/b812146j

    Article  Google Scholar 

  • Crane N, Mishra P, Murray J, Nolas GS (2009) Self-assembly for integration of microscale thermoelectric coolers. J Electron Mater 38:1252–1256

    Article  Google Scholar 

  • Crane NB, Mishra P, Volinsky AA (2010) Characterization of electrowetting processes through force measurements. Rev Sci Instrum 81:43902

    Article  Google Scholar 

  • Crane NB, Nelson C, Ni Q, Liberti C (2011) Demonstrations of fluidic manipulation for programmable assembly. Solid Freeform Fabrication Symposium, Austin

    Google Scholar 

  • Culpepper ML, Slocum AH, Shaikh FZ, Vrsek G (2004) Quasi-kinematic couplings for low-cost precision alignment of high-volume assemblies. Trans ASME J Mech Design 126:456–463

    Article  Google Scholar 

  • Dahlmann GW, Yeatman EM, Young PR et al (2001) MEMS high Q microwave inductors using solder surface tension self-assembly. In: Microwave symposium digest, 2001 IEEE MTT-S international, vol 1. Phoenix, AZ, USA, pp 329–332

  • Das AN, Zhang P, Lee WH et al (2007) Multiscale, deterministic micro-nano assembly system for construction of on-wafer microrobots. In: 2007 IEEE international conference on robotics and automation, ICRA’07. IEEE, Piscataway, NJ, United States, pp 461–466

  • Davies TH (1983a) Mechanical networks—I passivity and redundancy. Mech Mach Theory 18:95–112

    Article  Google Scholar 

  • Davies TH (1983b) Mechanical networks—II formulae for the degrees of mobility and redundancy. Mech Mach Theory 18:103–106

    Article  Google Scholar 

  • Davies TH (1983c) Mechanical networks—III Wrenches on circuit screws. Mech Mach Theory 18:107–112

    Article  Google Scholar 

  • Davies TH (2006) Freedom and constraint in coupling networks. Proceedings of the Institution of Mechanical Engineers, Part C. J Mech Eng Sci 220:989–1010. doi:10.1243/09544062C09105

    Article  Google Scholar 

  • de Gennes P-G, Quere D, Brochard-Wyart F (2004) Capillarity and wetting phenomena; drops, bubbles, pearls, waves. Springer, New York, p c2004

    Book  MATH  Google Scholar 

  • Dechev N, Cleghorn W (2002) Micro-assembly of microelectromechanical components into 3-D MEMS. Canad J Comput Electr Eng 27:7–15

    Google Scholar 

  • Dechev N, Cleghorn WL, Mills JK (2005) Design of grasping interface for microgrippers and micro-parts used in the microassembly of MEMS. In: ICIA 2005: 2005 international conference on information acquisition. IEEE, Hong Kong, China, pp 134–139

  • Dechev N, Ren L, Liu W et al (2006) Development of a 6 degree of freedom robotic micromanipulator for use in 3D MEMS microassembly. In: 2006 conference on international robotics and automation. IEEE, Orlando, FL, USA, pp 281–288

  • Deckman HW, Dunsmuir JH (1982) Natural lithography. Appl Phys Lett 41:377. doi:10.1063/1.93501

    Article  Google Scholar 

  • Deegan RD, Bakajin O, Dupont TF et al (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829. doi:10.1038/39827

    Article  Google Scholar 

  • Deegan R, Bakajin O, Dupont T et al (2000) Contact line deposits in an evaporating drop. Phys Rev E Stat Phys Plasmas Fluids 62:756–765

    Article  Google Scholar 

  • Dendukuri D, Pregibon DC, Collins J et al (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5:365–369

    Article  Google Scholar 

  • Denkov N, Velev O, Kralchevski P et al (1992) Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8:3183–3190

    Article  Google Scholar 

  • Dhindsa MS, Smith NR, Heikenfeld J et al (2006) Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers. Langmuir 22:9030–9034. doi:10.1021/la061139b

    Article  Google Scholar 

  • Di Leonardo R, Ianni F, Ruocco G (2009) Colloidal attraction induced by a temperature gradient. Langmuir 25:4247–4250. doi:10.1021/la8038335

    Article  Google Scholar 

  • Diller E, Pawashe C, Floyd S, Sitti M (2011) Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int J Robot Res 30:1667–1680. doi:10.1177/0278364911416140

    Article  Google Scholar 

  • Dimitrov AS, Nagayama K (1995) Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays. Chem Phys Lett 243:462–468

    Article  Google Scholar 

  • Dimitrov AS, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12:1303–1311

    Article  Google Scholar 

  • Dimitrov AS, Miwa T, Nagayama K (1999) A comparison between the optical properties of amorphous and crystalline monolayers of silica particles. Langmuir 15:5257–5264

    Article  Google Scholar 

  • Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science (New York, NY) 314:1583–1585. doi:10.1126/science.1131372

    Article  Google Scholar 

  • Ding Z, Song W-B, Ziaie B (2009) Sequential droplet manipulation via vibrating ratcheted microchannels. Sens Actuators B Chem 142:362–368. doi:10.1016/j.snb.2009.08.022

    Article  Google Scholar 

  • Dong L, Agarwal AK, Beebe DJ, Jiang HR (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554

    Article  Google Scholar 

  • Du R, Tang CXY, Zhang DL (2008) Smart devices and machines for advanced manufacturing. In: Wang L, Xi J (eds) Springer, London, pp 367–384

  • Edman CF, Swint RB, Gurtner C et al (2000) Electric field directed assembly of an InGaAs LED onto silicon circuitry. IEEE Photonics Technol Lett 12:1198–1200. doi:10.1109/68.874234

    Article  Google Scholar 

  • Ellekilde L-P, Petersen HG (2006) Design and test of object aligning grippers for industrial applications. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, IROS. IEEE, Beijing, China, pp 5165–5170

  • Elwenspoek M, Abelmann L, Berenschot E et al (2010) Self-assembly of (sub-)micron particles into supermaterials. J Micromech Microeng 20:064001

    Article  Google Scholar 

  • Enikov ET, Lazarov KV (2001) Optically transparent gripper for microassembly. Microrobotics and Microassembly III, October 29, 2001–October 30. SPIE, Newton, MA, USA, pp 40–49

  • Erdmann MA, Mason MT (1988) An exploration of sensorless manipulation. IEEE J Robot Autom 4:369–379

    Article  Google Scholar 

  • Fang JD, Bohringer KF (2006a) Wafer-level packaging based on uniquely orienting self-assembly (The DUO-SPASS processes). J Microelectromech Syst 15:531–540

    Article  Google Scholar 

  • Fang JD, Bohringer KF (2006b) Wafer-level packaging based on uniquely orienting self-assembly (The DUO-SPASS processes). J Microelectromech Syst 15:531–540

    Article  Google Scholar 

  • Fazio TD (1987) Generation and consideration of all assembly sequences for assembly system design. In: Proceedings of the 1987 international conference on engineering design—international congress on planning and design theory. ASME, Boston, MA, USA, pp 782–795

  • Fearing RS (1995) Survey of sticking effects for micro parts handling. In: International conference on intelligent robots and systems, vol 2. IEEE, Pittsburgh, PA, USA, pp 212–217

  • Feddema JT, Xavier P, Brown R (2001) Micro-assembly planning with van der Waals force. J Micromechatronics 1:139–153

    Article  Google Scholar 

  • Fischer UC (1981) Submicroscopic pattern replication with visible light. J Vac Sci Technol 19:881

    Article  Google Scholar 

  • Fonstad CG (2002) Magnetically-assisted statistical assembly—a new heterogeneous integration technique. Massachusetts Institute of Technology, Boston, p 6

    Google Scholar 

  • Forsberg P, Nikolajeff F, Karlsson M (2011) Cassie–Wenzel and Wenzel–Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter 7:104–109

    Article  Google Scholar 

  • Fountain TWR, Kailat PV, Abbott JJ (2010) Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. In: 2010 IEEE international conference on robotics and automation. IEEE, Anchorage, AK, USA, pp 576–581

  • Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ (2009) Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res 29:613–636. doi:10.1177/0278364909353351

    Article  Google Scholar 

  • Frutiger DR, Kratochvil BE, Nelson BJ (2010) MagMites - Microrobots for wireless microhandling in dry and wet environments. In: 2010 IEEE international conference on robotics and automation (ICRA), Anchorage, AK, USA, pp 1112–1113

  • Furse JE (1981) Kinematic design of fine mechanisms in instruments. J Phys E Sci Instrum 14:264–272

    Article  Google Scholar 

  • Gao J, Chase KW, Magleby SP (1998) Generalized 3-D tolerance analysis of mechanical assemblies with small kinematic adjustments. IIE Trans (Institute of Industrial Engineers) 30:367–377

    Google Scholar 

  • Gauthier M, Piat E (2002) An electromagnetic micromanipulation system for single-cell manipulation. J Micromechatronics 2:87–119. doi:10.1163/156856302322756450

    Article  Google Scholar 

  • Gluskin R (1970) Controlling transport motion with fluidics. Mech Eng 92:13–17

    Google Scholar 

  • Goemans OC, Goldberg K, van der Stappen AF (2006) Blades: a new class of geometric primitives for feeding 3D parts on vibratory tracks. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006. IEEE, Orlando, FL, USA, pp 1730–1736

  • Golosovsky M, Saado Y, Davidov D (1999) Self-assembly of floating magnetic particles into ordered structures: a promising route for the fabrication of tunable photonic band gap materials. Appl Phys Lett 75:4168. doi:10.1063/1.125571

    Article  Google Scholar 

  • Gorder PF (2003) Sizing up smart dust. Comput Sci Eng 5:6–9. doi:10.1109/MCISE.2003.1238697

    Google Scholar 

  • Gracias DH, Tien J, Breen TL et al (2000) Forming electrical networks in three dimensions by self-assembly. Science 289:1170–1172. doi:10.1126/science.289.5482.1170

    Article  Google Scholar 

  • Gracias DH, Kavthekar V, Love JC et al (2002) Fabrication of micrometer-scale, patterned polyhedra by self-assembly. Adv Mater 14:235–238. doi:10.1002/1521-4095(20020205)14:3<235:AID-ADMA235>3.0.CO;2-B

    Article  Google Scholar 

  • Greiner A, Lienemann J, Korvink JG et al (2002) Capillary forces in micro-fluidic self-assembly. In: 2002 international conference on modeling and simulation of microsystems. Computational Publications, Cambridge, MA 02139, United States, San Juan, Puerto Rico, USA, pp 198–201

  • Gro R, Bonani M, Mondada F, Dorigo M (2006) Autonomous self-assembly in swarm-bots. IEEE Trans Rob 22:1115–1130. doi:10.1109/TRO.2006.882919

    Article  Google Scholar 

  • Gross R, Dorigo M (2008) Self-assembly at the macroscopic scale. Proc IEEE 96:1490–1508. doi:10.1109/JPROC.2008.927352

    Article  Google Scholar 

  • Grzybowski BA, Campbell CJ (2004) Complexity and dynamic self-assembly. Chem Eng Sci 59:1667–1676. doi:10.1016/j.ces.2004.01.023

    Article  Google Scholar 

  • Grzybowski BA, Whitesides GM (2001) Macroscopic synthesis of self-assembled dissipative structures. J Phys Chem B 105:8770–8775. doi:10.1021/jp011187z

    Article  Google Scholar 

  • Grzybowski BA, Whitesides GM (2002) Directed dynamic self-assembly of objects rotating on two parallel fluid interfaces. J Chem Phys 116:8571–8577

    Article  Google Scholar 

  • Grzybowski BA, Stone HA, Whitesides GM (2000) Dynamic self-assembly of objects rotating at a liquid ± air interface. Nature 405:1033–1036

    Article  Google Scholar 

  • Grzybowski BA, Jiang XY, Stone HA, Whitesides GM (2001) Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: macroscopic, two-dimensional classical artificial atoms and molecules. Phys Rev E 6401:11603

    Article  Google Scholar 

  • Grzybowski B, Radkowski M, Campbell C (2004) Self-assembling fluidic machines. Appl Phys Lett 84:1798–1800

    Article  Google Scholar 

  • Gu T, Liu H (2008) The symbolic OBDD scheme for generating mechanical assembly sequences. Form Methods Syst Design 33:29–44. doi:10.1007/s10703-008-0052-y

    Article  MATH  Google Scholar 

  • Guldiken R, Jo MC, Gallant ND et al (2012) Sheathless size-based acoustic particle separation. Sensors 12:905–922. doi:10.3390/s120100905

    Article  Google Scholar 

  • Guo X, Li H, Ahn BY et al (2009) Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proc Nat Acad Sci USA 106:20149–20154. doi:10.1073/pnas.0907390106

    Article  Google Scholar 

  • Hale LC, Slocum AH (2001) Optimal design techniques for kinematic couplings. Precis Eng 25:114–127

    Article  Google Scholar 

  • Harsh K, Lee YC (1998) Modeling for solder self-assembled MEMS. Micro-optics integration and assemblies. SPIE-International Society Optical Engineering, San Jose, pp 177–184

    Book  Google Scholar 

  • Harsh K, Bright V, Lee Y (1999a) Solder self-assembly for three-dimensional microelectromechanical systems. Sens Actuators A 77:237–244

    Article  Google Scholar 

  • Harsh KF, Bright VM, Lee YC (1999b) Solder self-assembly for three-dimensional microelectromechanical systems. Sens Actuators A 77:237–244

    Article  Google Scholar 

  • Hayashi T (1992) An innovative bonding technique for optical chips using solder bumps that eliminate chip positioning adjustments. IEEE Trans Compon Hybrids Manuf Technol 15:225–230. doi:10.1109/33.142898

    Article  Google Scholar 

  • Hosokawa K, Shimoyama I, Miura H (1994) Dynamics of self-assembling systems-analogy with chemical kinetics. In: Proceedings of the fourth international workshop on the syntheses and simulation of living systems. MIT Press, Cambridge, MA, USA, pp 172–180

  • Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094. doi:10.1021/jp0609232

    Article  Google Scholar 

  • Hu W, Ishii KS, Ohta AT (2011) Micro-assembly using optically controlled bubble microrobots. Appl Phys Lett 99:94103

    Article  Google Scholar 

  • Huang J, Kim F, Tao AR et al (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater 4:896–900

    Article  Google Scholar 

  • Huck WTS, Tien J, Whitesides GM (1998) Three-dimensional mesoscale self-assembly. J Am Chem Soc 120:8267–8268

    Article  Google Scholar 

  • Hughes MP (2000) AC electrokinetics: applications for nanotechnology. Nanotechnology 11:124–132. doi:10.1088/0957-4484/11/2/314

    Article  Google Scholar 

  • Hulteen JC, Van Duyne RP (1995) Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A Vac Surf Films 13:1553. doi:10.1116/1.579726

    Article  Google Scholar 

  • Jacobs HO, Tao AR, Schwartz A et al (2002) Fabrication of a cylindrical display by patterned assembly. Science 296:323–325

    Article  Google Scholar 

  • Jamal M, Bassik N, Cho J-H et al (2010) Directed growth of fibroblasts into three dimensional micropatterned geometries via self-assembling scaffolds. Biomaterials 31:1683–1690

    Article  Google Scholar 

  • Janjua M, Nudurupati S, Singh P, Aubry N (2011) Electric field-induced self-assembly of micro- and nanoparticles of various shapes at two-fluid interfaces. Electrophoresis 32:518–526. doi:10.1002/elps.201000523

    Article  Google Scholar 

  • Jayaram U, Kim Y, Jayaram S et al (2004) Reorganizing CAD assembly models (as-designed) for manufacturing Simulations and planning (as-built). Trans ASME J Comput Inf Sci Eng 4:98–108. doi:10.1115/1.1737772

    Article  Google Scholar 

  • Jeong JS, Lee JW, Lee CY et al (2011) Particle manipulation in a microfluidic channel using acoustic trap. Biomed Microdevices 13:779–788. doi:10.1007/s10544-011-9548-0

    Article  Google Scholar 

  • Jia K, Yang K, Fan Z, Ju B-F (2012) A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force. Rev Sci Instrum 83:014902. doi:10.1063/1.3676636

    Article  Google Scholar 

  • Jiang L, Erickson D (2011) Directed self-assembly of microcomponents enabled by laser-activated bubble latching. Langmuir 27:11259–11264. doi:10.1021/la2019617

    Article  Google Scholar 

  • Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15:1184

    Article  Google Scholar 

  • Jones TB, Kraybill JP (1986) Active feedback-controlled dielectrophoretic levitation. J Appl Phys 60:1247. doi:10.1063/1.337345

    Article  Google Scholar 

  • Joshi AS, Sun Y (2010) Numerical simulation of colloidal drop deposition dynamics on patterned substrates for printable electronics fabrication. J Display Technol 6:579–585. doi:10.1109/JDT.2010.2040707

    Article  Google Scholar 

  • Kaler KVIS, Tai AKC (1988) Dynamic (active feedback controlled) dielectrophoretic levitation of Canola protoplasts. In: Proceedings of the annual international conference of the ieee engineering in medicine and biology society, vol 1. IEEE, New Orleans, LA, USA, pp 267–268

  • Kalontarov M, Tolley MT, Lipson H, Erickson D (2010) Hydrodynamically driven docking of blocks for 3D fluidic assembly. Microfluid Nanofluid 9:551–558. doi:10.1007/s10404-010-0572-0039

    Article  Google Scholar 

  • Kasaya T, Miyazaki H, Saito S, Sato T (1999) Micro object handling under SEM by vision-based automatic control. In: Proceedings of international conference on robotics and automation. IEEE, Piscataway, NJ, USA, pp 2189–2196

  • Katz E, Yarin AL, Salalha W, Zussman E (2006) Alignment and self-assembly of elongated micron size rods in several flow fields. J Appl Phys 100:34312–34313

    Article  Google Scholar 

  • Kim D-H, Kim B, Kang H (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. Microsyst Technol 10:275–280. doi:10.1007/s00542-003-0330-y

    Article  MathSciNet  Google Scholar 

  • Kim J-H, Liu G, Kim SH (2006) Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma. J Mater Chem 16:977–981

    Article  Google Scholar 

  • Kim SH, Hashi S, Ishiyama K (2011) Magnetic actuation based snake-like mechanism and locomotion driven by rotating magnetic field. IEEE Trans Magn 47:3244–3247. doi:10.1109/TMAG.2011.2143698

    Article  Google Scholar 

  • Klavins E, Ghrist R, Lipsky D (2006) A grammatical approach to self-organizing robotic systems. IEEE Trans Autom Control 51:949–962

    Article  MathSciNet  Google Scholar 

  • Knuesel RJ, Jacobs HO (2010) Self-assembly of microscopic chiplets at a liquid–liquid–solid interface forming a flexible segmented monocrystalline solar cell. Proc Nat Acad Sci USA 107:993–998

    Article  Google Scholar 

  • Knuesel RJ, Park S, Zheng W, Jacobs HO (2012) Self-assembly and self-tiling: integrating active dies across length scales on flexible substrates. J Microelectromech Syst 21:85–99

    Article  Google Scholar 

  • Koishi T, Yasuoka K, Fujikawa S et al (2009) Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc Nat Acad Sci 106:8435–8440

    Google Scholar 

  • Kralchevsky PA, Nagayama K (2001) Particles at fluids interfaces and membranes: attachment of colloid particles and proteins to interfaces and formation of two-dimensional arrays/Peter A. Kralchevsky, Kuniaki Nagayama. Elsevier, Amsterdam, New York

  • Krishnamoorthy AV, Goossen KW (1998) Optoelectronic-VLSI: photonics integrated with VLSI circuits. IEEE J Sel Top Quantum Electron 4:899–912. doi:10.1109/2944.736073

    Article  Google Scholar 

  • Krishnan M, Tolley MT, Lipson H, Erickson D (2008) Increased robustness for fluidic self-assembly. Phys Fluids 20:73304

    Article  Google Scholar 

  • Krishnan M, Tolley MT, Lipson H, Erickson D (2009) Hydrodynamically tunable affinities for fluidic assembly. Langmuir 25:3769–3774. doi:10.1021/la803517f

    Article  Google Scholar 

  • Krupenkin TN, Taylor JA, Wang EN et al (2007) Reversible wetting–dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces. Langmuir 23:9128–9133. doi:10.1021/la7008557

    Article  Google Scholar 

  • Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “‘ink’” followed by chemical etching. Appl Phys Lett 63:2002–2004

    Article  Google Scholar 

  • Kumar S, Seo Y-K, Kim G-H (2009) Manipulation and trapping of semiconducting ZnO nanoparticles into nanogap electrodes by dielectrophoresis technique. Appl Phys Lett 94:153104. doi:10.1063/1.3118588

    Article  Google Scholar 

  • Kwon JO, Yang JS, Chung SK (2011) Untethered microrobot actuated by an electromagnetic field with an acoustically oscillating bubble for bio/micro-object manipulation. In: 16th international solid-state sensors, actuators and microsystems conference (TRANSDUCERS), 2011. IEEE, Beijing, China, pp 282–285

  • Lambert P, Delchambre A (2005) Design rules for a capillary gripper in microassembly (ISATP 2005). In: The 6th IEEE international symposium on assembly and task planning: from nano to macro assembly and manufacturing. IEEE, Montreal, Quebec, Canada, pp 67–73

  • Lanham J, Dialami F (2001) The assembly state vector: a new approach to the generation of assembly sequences. In: Proceedings of the 2001 IEEE international symposium on assembly and task planning (ISATP2001) assembly and disassembly in the twenty-first century. IEEE, Fukuoka, Japan, pp 37–42

  • Lappa M (2010) Thermal Convection [electronic resource]: patterns, evolution and stability. Wiley, Hoboken

    Google Scholar 

  • Lee SW, Bashir R (2003) Dielectrophoresis and electrohydrodynamics-mediated fluidic assembly of silicon resistors. Appl Phys Lett 83:3833. doi:10.1063/1.1624642

    Article  Google Scholar 

  • Lee SW, Bashir R (2005) Dielectrophoresis and chemically mediated directed self-assembly of micrometer-scale three-terminal metal oxide semiconductor field-effect transistors. Adv Mater 17:2671–2677. doi:10.1002/adma.200501048

    Article  Google Scholar 

  • Lee J, Lee C, Shung KK (2010a) Calibration of sound forces in acoustic traps. IEEE Trans Ultrason Ferroelectr Freq Control 57:2305–2310. doi:10.1109/TUFFC.2010.1691

    Article  Google Scholar 

  • Lee J, Teh S-Y, Lee A et al (2010b) Transverse acoustic trapping using a gaussian focused ultrasound. Ultrasound Med Biol 36:350–355. doi:10.1016/j.ultrasmedbio.2009.10.005

    Article  Google Scholar 

  • Leong TG, Lester PA, Koh TL et al (2007) Surface tension-driven self-folding polyhedra. Langmuir 23:8747–8751

    Article  Google Scholar 

  • Leong TG, Zarafshar AM, Gracias DH (2010) Three-dimensional fabrication at small size scales. Small 6:792–806

    Article  Google Scholar 

  • Linderman RJ, Kladitis PE, Bright VM (2002) Development of the micro rotary fan. Sens Actuators A 95:135–142

    Article  Google Scholar 

  • Liu C, Qiao H, Zhang B (2011a) Stable sensorless localization of 3-D objects. IEEE Trans Syst Man Cybern Part C (Appl Rev) 41:923–941. doi:10.1109/TSMCC.2011.2109948

    Article  Google Scholar 

  • Liu G, Fu L, Rode AV, Craig VSJ (2011b) Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Langmuir 27:2595–2600. doi:10.1021/la104669k

    Article  Google Scholar 

  • Lopez-Walle B, Gauthier M, Chaillet N (2008) Principle of a submerged freeze gripper for microassembly. IEEE Trans Rob 24:897–902. doi:10.1109/TRO.2008.924944

    Article  Google Scholar 

  • Love JC, Urbach AR, Prentiss MG, Whitesides GM (2003) Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions. J Am Chem Soc 125:12696–12697. doi:10.1021/ja037642h

    Article  Google Scholar 

  • Lu H, Bailey C (2005) Dynamic analysis of flip-chip self-alignment. IEEE Trans Adv Packag 28:475–480

    Article  Google Scholar 

  • Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Growth of a semiconductor nanoparticle ring during the drying of a suspension droplet. Langmuir 15:957–965

    Article  Google Scholar 

  • Mantripragada R, Whitney DE (1998) The datum flow chain: a systematic approach to assembly design and modeling. Res Eng Design 10:150–165

    Article  Google Scholar 

  • Manukyan G, Oh JM, van den Ende D et al (2011) Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions. Phys Rev Lett 106:14501

    Article  Google Scholar 

  • Marentis TC, Vacanti JP, Hsiao JC, Borenstein JT (2009) Elastic averaging for assembly of three-dimensional constructs from elastomeric micromolded layers. J Microelectromech Syst 18:531–538. doi:10.1109/JMEMS.2009.2018372

    Article  Google Scholar 

  • Martel S (2005) Method and system for controlling micro-objects or micro-particles. US Patent US 2006/0073540 A1

  • Martel S (2006) Controlled Bacterial Micro-actuation. In: 2006 international conference on microtechnologies in medicine and biology. IEEE, Okinawa, Japan, pp 89–92

  • Martel S, Mohammadi M (2010) Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. In: 2010 IEEE international conference on robotics and automation. IEEE, Anchorage, AK, USA, pp 500–505

  • Mastrangeli M, Abbasi S, Varel C et al (2009) Self-assembly from milli- to nanoscales: methods and applications. J Micromech Microeng Struct Dev Syst 19:83001. doi:10.1088/0960-1317/19/8/083001

    Article  Google Scholar 

  • Matsushita SI, Yagi Y, Miwa T et al (2000) Light propagation in composite two-dimensional arrays of polystyrene spherical particles. Langmuir 16:636–642

    Article  Google Scholar 

  • Meitinger T, Pfeiffer F (1994) Automated assembly with compliant mating parts. In: Proceedings of the 1994 IEEE international conference on robotics and automation. IEEE, San Diego, CA, USA, pp 1462–1467

  • Meitinger T, Pfeiffer F (1997) Modelling and simulation of assembly processes with robots. Appl Math Comput Sci 7:343–375

    MATH  Google Scholar 

  • Menciassi A, Eisinberg A, Izzo I, Dario P (2004) From “macro” to “micro” manipulation: models and experiments. Mechatr IEEE/ASME Trans Mechatr 9:311–320

    Article  Google Scholar 

  • Moll M, Goldberg K, Erdmann MA, Fearing R (2002) Orienting micro-scale parts with squeeze and roll primitives. In: Robotics and automation, 2002. Proceedings. IEEE international conference on ICRA’02, vol 2. Washington, DC, USA, pp 1931–1936

  • Moon I, Kim J (2006) Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system. Sens Actuators A 130–131:537–544

    Google Scholar 

  • Morris CJ, Parviz BA (2006) Self-assembly and characterization of Marangoni microfluidic actuators. J Micromech Microeng 16:972–980

    Article  Google Scholar 

  • Morris CJ, Parviz BA (2008) Micro-scale metal contacts for capillary force-driven self-assembly. J Micromech Microeng 18:015022. doi:10.1088/0960-1317/18/1/015022

    Google Scholar 

  • Morris CJ, Stauth SA, Parviz BA (2005) Self-assembly for microscale and nanoscale packaging: steps toward self-packaging. IEEE Trans Adv Packag 28:600–611

    Article  Google Scholar 

  • Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:R705

    Article  Google Scholar 

  • Myers D (1991) Surfaces, interfaces, and colloids: principles and applications. VCH Publishers, New York

    Google Scholar 

  • Napp N, Burden S, Klavins E (2006) The statistical dynamics of programmed self-assembly. In: 2006 IEEE international conference on robotics and automation, ICRA 2006. IEEE, Orlando, FL, United States, pp 1469–1476

  • Nasiatka PJ, Karim ZS (1995) Determination of optimal solder volume for precision self-alignment of BGA using flip-chip bonding. In: Proceedings of electron devices meeting, 1995, 1995 IEEE Hong Kong, pp 6–9

  • Nelson WC, Kim C-J (2012) Droplet actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Technol 26:1747–1771. doi:10.1163/156856111X599562

    Google Scholar 

  • Nelson CW, Lynch CM, Crane NB (2011) Continuous electrowetting via electrochemical diodes. Lab Chip 11:2149–2152

    Article  Google Scholar 

  • Neubert J, Cantwell AP, Constantin S et al (2010) A robotic module for stochastic fluidic assembly of 3D self-reconfiguring structures. In: 2010 IEEE international conference on robotics and automation. IEEE, pp 2479–2484

  • Ng JMK, Fuerstman MJ, Grzybowski BA et al (2003) Self-assembly of gears at a fluid/air interface. J Am Chem Soc 125:7948–7958. doi:10.1021/ja0347235

    Article  Google Scholar 

  • Ni Q, Crane NB, Guldiken RO (2011) Ultrasonic excitation induced Wenzel to Cassie transition. In: Proceedings of the ASME 2011 international mechanical engineering congress and exposition. Denver, CO, USA, pp 11–13

  • Nichol AJ, Stellman PS, Arora WJ, Barbastathis G (2007) Two-step magnetic self-alignment of folded membranes for 3D nanomanufacturing. Microelectron Eng 84:1168–1171

    Article  Google Scholar 

  • O’Kane JM, LaValle SM (2005) Almost-sensorless localization BT—2005 IEEE international conference on robotics and automation, April 18, 2005—April 22, 2005. Institute of Electrical and Electronics Engineers Inc., Barcelona, pp 3764–3769

    Google Scholar 

  • O’Riordan A, Delaney P, Redmond G (2004) Field configured assembly: programmed manipulation and self-assembly at the mesoscale. Nano Lett 4:761–765. doi:10.1021/nl034145q

    Article  Google Scholar 

  • Ohasi T, Iwata M, Arimoto S, Miyakawa S (2002) Extended assemblability evaluation method (AEM); (extended quantitative assembly producibility evaluation for assembled parts and products). JSME Int J Ser C 45:567–574

    Article  Google Scholar 

  • Oliver SRJ, Clark TD, Bowden N, Whitesides GM (2001) Three-dimensional self-assembly of complex, millimeter-scale structures through capillary bonding. J Am Chem Soc 123:8119–8120

    Article  Google Scholar 

  • Ozdemir T, Sandal D, Culha M et al (2010) Assembly of magnetic nanoparticles into higher structures on patterned magnetic beads under the influence of magnetic field. Nanotechnology 21:125603. doi:10.1088/0957-4484/21/12/125603

    Article  Google Scholar 

  • Park J, Moon J (2006) Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir ACS J Surf Colloids 22:3506–3513. doi:10.1021/la053450j

    Article  Google Scholar 

  • Park SH, Xia Y (1999) Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir 15:266–273

    Article  Google Scholar 

  • Park W, Lee HS, Park H, Kwon S (2009) Sorting microparticles by orientation using wedged-fin and railed microfluidics. In: TRANSDUCERS 2009–2009 international solid-state sensors, actuators and microsystems conference. IEEE, Denver, CO, United States, pp 429–432

  • Park KS, Xiong X, Baskaran R, Bohringer KF (2011) Part scaling and mechanics of thin part self-assembly in the fluidic phase. In: 2011 IEEE 24th international conference on micro electro mechanical systems. IEEE, Cancun, Mexico, pp 364–367

  • Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 28:1077–1094. doi:10.1177/0278364909341413

    Article  Google Scholar 

  • Pelesko JA (2007) Self assembly: the science of things that put themselves together, (2006). Chapman and Hall/CRC, Boca Raton 336

    Book  Google Scholar 

  • Perkins JM (2002) Magnetically assisted statistical assembly of III–V heterostructures on silicon. Massachusetts Institute of Technology, Cambridge, MA, p 75

  • Pethig R (1979) Dielectric and electronic properties of biological materials. Wiley, Chichester, NY, p 376

  • Pieranski P, Strzelecki L, Pansu B (1983) Thin colloidal crystals. Phys Rev Lett 50:900–903

    Article  Google Scholar 

  • Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22:869–871

    Article  Google Scholar 

  • Popa DO, Lee WH, Murthy R et al (2007) High yield automated MEMS assembly. In: 3rd IEEE international conference on automation science and engineering. IEEE, Scottsdale, AZ, USA, pp 1099–1104

  • Potsaid B, Bellouard Y, Wen JT (2005) Adaptive scanning optical microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging. Opt Express 13:6504–6518. doi:10.1364/OPEX.13.006504

    Article  Google Scholar 

  • Potsaid B, Wen JT, Bellouard Y (2006) Adaptive scanning optical microscope (ASOM) for large workspace micro-robotic applications. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006. IEEE, Orlando, FL, USA, pp 1024–1029

  • Puttlitz KJ, Totta P (2001) Area array interconnection handbook. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Py C, Reverdy P, Doppler L et al (2007) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98:156103

    Article  Google Scholar 

  • Ramadoss V, Crane NB (2008) Design of fluidic self-assembly bonds for precise component positioning. Photonics packaging, integration, and interconnects VIII. SPIE, San Jose, p 68990

    Book  Google Scholar 

  • Randall CL, Gultepe E, Gracias DH (2012) Self-folding devices and materials for biomedical applications. Trends Biotechnol 30:138–146

    Article  Google Scholar 

  • Roach LS, Song H, Ismagilov RF (2004) Controlling nonspecific protein adsorption in a Pplug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem 77:785–796. doi:10.1021/ac049061w

    Article  Google Scholar 

  • Rogers JA, Nuzzo RG (2005) Recent progress in soft lithography. Mater Today 8:50–56

    Article  Google Scholar 

  • Rudenko OV, Lebedev-Stepanov PV, Gusev VA et al (2010) Control of the self-assembly processes in a droplet of a colloidal solution by an acoustic field. Acoust Phys 56:935–941. doi:10.1134/S1063771010060187

    Article  Google Scholar 

  • Salalha W, Zussman E (2005) Investigation of fluidic assembly of nanowires using a droplet inside microchannels. Phys Fluids 17:063301. doi:10.1063/1.1925047

    Article  Google Scholar 

  • Schneider TM, Mandre S, Brenner MP (2011) Algorithm for a microfluidic assembly line. Phys Rev Lett 106:094503. doi:10.1103/PhysRevLett.106.094503

    Google Scholar 

  • Schouten CH, Rosielle PCJN, Schellekens PHJ (1997) Design of a kinematic coupling for precision applications. Precis Eng 20:46–52

    Article  Google Scholar 

  • Seth A, Vance JM, Oliver JH (2010) Combining dynamic modeling with geometric constraint management to support low clearance virtual manual assembly. J Mech Design 132:081002. doi:10.1115/1.4001565

    Google Scholar 

  • Shastry A, Taylor D, Bohringer KF (2007) Micro-structured surface ratchets for droplet transport. In: International solid-state sensors, actuators and microsystems conference, 2007. TRANSDUCERS 2007. Lyon, France, pp 1353–1356

  • Shet S, Mehta VR, Fiory AT et al (2004) The magnetic field-assisted assembly of nanoscale semiconductor devices: a new technique. JOM 56:32–34

    Article  Google Scholar 

  • Shetye SB, Agashe JS, Arnold DP (2007) Investigation of microscale magnetic forces for magnet array self-assembly. IEEE Trans Magn 43:2713–2715

    Article  Google Scholar 

  • Shetye SB, Eskinazi I, Arnold DP (2009) Part-to-part and part-to-substrate magnetic self-assembly of millimeter scale components with angular orientation. In: 2009 IEEE 22nd international conference on micro electro mechanical systems. IEEE, Sorrento, Italy, pp 669–672

  • Shin J-S, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835. doi:10.1021/ja047543j

    Article  Google Scholar 

  • Shukla G, Whitney DE (2001) Systematic evaluation of constraint properties of datum flow chain. In: 2001 IEEE international symposium on assembly and task planning (ISATP2001), May 28–29 2001. Fukuoka, pp 337–343

  • Shukla G, Whitney DE (2005) The path method for analyzing mobility and constraint of mechanisms and assemblies. IEEE Trans Autom Sci Eng 2:184–192

    Article  Google Scholar 

  • Singh BP, Onozawa K, Yamanaka K et al (2005) Novel high precision optoelectronic device fabrication technique using guided fluidic assembly. Opt Rev 12:345–351

    Article  Google Scholar 

  • Slocum AH (1988) Kinematic couplings for precision fixturing part 1: formulation of design parameters. Precis Eng 10:85–91

    Article  Google Scholar 

  • Slocum AH (1992) Precision machine design. Society of Manufacturing Engineers, Dearborn 750

    Google Scholar 

  • Slocum AH, Donmez A (1988) Kinematic couplings for precision fixturing—part 2: experimental determination of repeatability and stiffness. Precis Eng 10:115–122

    Article  Google Scholar 

  • Slocum AH, Weber AC (2003) Precision passive mechanical alignment of wafers. J Microelectromech Syst 12:826–834

    Article  Google Scholar 

  • Soga I, Ohno Y, Kishimoto S et al (2003) Fluidic assembly of thin GaAs blocks on Si substrates. Jpn J Appl Phys 42:2226–2229

    Article  Google Scholar 

  • Solovev AA, Sanchez S, Pumera M et al (2010) Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv Funct Mater 20:2430–2435. doi:10.1002/adfm.200902376

    Article  Google Scholar 

  • Springer GH, Higgins DA (2000) Multiphoton-excited fluorescence imaging and photochemical modification of dye-doped polystyrene microsphere arrays. Chem Mater 12:1372–1377

    Article  Google Scholar 

  • Sprumont F, Muller J-P (1997) AMACOIA: a multiagent system for designing flexible assembly lines. In: First international conference on practical application of intelligent agents and multi-agent technology (PAAM). Taylor & Francis, London, UK, pp 573–589

  • Srinivasan U, Liepmann D, Howe RT (2001) Microstructure to substrate self-assembly using capillary forces. J Microelectromech Syst 10:17–24. doi:10.1109/84.911087

    Article  Google Scholar 

  • Stauth SA, Parviz BA (2006) Self-assembled single-crystal silicon circuits on plastic. Proc Nat Acad Sci USA 103:13922–13927

    Article  Google Scholar 

  • Steager E, Kim C-B, Patel J et al (2007) Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl Phys Lett 90:263901. doi:10.1063/1.2752721

    Article  Google Scholar 

  • Sun S (2000) Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 287:1989–1992

    Article  Google Scholar 

  • Sun C, Zhao X-W, Han Y-H, Gu Z-Z (2008) Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment. Thin Solid Films 516:4059–4063

    Article  Google Scholar 

  • Syms RRA (1999) Surface tension powered self-assembly of 3-D micro-optomechanical structures. J Microelectromech Syst 8:448–455. doi:10.1109/84.809060

    Article  Google Scholar 

  • Syms RRA, Yeatman EM (1993) Self-assembly of three-dimensional microstructures using rotation by surface tension forces. Electron Lett 29:662

    Article  Google Scholar 

  • Syms RA, Yeatman E, Brigh VM, Whitesides GM (2003) Surface tension-powered self-assembly of microstructures-the state-of-the-art. J Microelectromech Syst 12:387–417

    Article  Google Scholar 

  • Tolley MT, Krishnan M, Erickson D, Lipson H (2008) Dynamically programmable fluidic assembly. Appl Phys Lett 93:254105

    Article  Google Scholar 

  • Tolley MT, Kalontarov M, Neubert J et al (2010) Stochastic modular robotic systems: a study of fluidic assembly strategies. IEEE Trans Rob 26:518–530. doi:10.1109/TRO.2010.2047299

    Article  Google Scholar 

  • Tottori S, Sugita N, Kometani R et al (2011) Selective control method for multiple magnetic helical microrobots. J Micro Nano Mechatron 6:1–7. doi:10.1007/s12213-011-0035-8

    Article  Google Scholar 

  • Udeshi T, Tsui K (2005) Assembly sequence planning for automated micro assembly. In: 2005 IEEE international symposium on assembly and task planning (ISATP). IEEE, Zyvex Corp., Richardson, TX, USA, pp 98–105

  • Vanapalli SA, Iacovella CR, Sung KE et al (2008) Fluidic assembly and packing of microspheres in confined channels. Langmuir ACS J Surf Colloids 24:3661–3670

    Article  Google Scholar 

  • Vasudev A, Zhe J (2008) A capillary microgripper based on electrowetting. Appl Phys Lett 93:103503. doi:10.1063/1.2978402

    Article  Google Scholar 

  • Vasudev A, Jagtiani A, Du L, Zhe J (2009) A low-voltage droplet microgripper for micro-object manipulation. J Micromech Microeng 19:075005

    Google Scholar 

  • Velev OD, Kaler EW (2000) Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Adv Mater 12:531–534

    Article  Google Scholar 

  • Velev OD, Lenhoff AM (2000) Colloidal crystals as templates for porous materials. Curr Opin Colloid Interface Sci 5:56–63

    Article  Google Scholar 

  • Verheijen HJJ, Prins MWJ (1999) Contact angles and wetting velocity measured electrically. Rev Sci Instrum 70:3668–3673

    Article  Google Scholar 

  • Verma AK, Hadley MA, Yeh H-JJ, Smith JS (1995) Fluidic self-assembly of silicon microstructures. In: Proceedings of 45th electronic components and technology conference, 1995. IEEE, Las Vegas, NV, USA, pp 1263–1268

  • Vidyasagar A, Majewski J, Toomey R (2008) Temperature induced volume-phase transitions in surface-tethered poly(N-isopropylacrylamide) networks. Macromolecules 41:919–924

    Article  Google Scholar 

  • Vollmers K, Frutiger DR, Kratochvil BE, Nelson BJ (2008) Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl Phys Lett 92:144103. doi:10.1063/1.2907697

    Article  Google Scholar 

  • Wale MJ, Edge C (1990) Self-aligned flip-chip assembly of protonic devices with electrical and optical connections. IEEE Trans Compon Hybrids Manuf Technol 13:780–786. doi:10.1109/33.62593

    Article  Google Scholar 

  • Watanabe S, Inukai K, Mizuta S, Miyahara MT (2009) Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir ACS J Surf Colloids 25:7287–7295

    Article  Google Scholar 

  • Wei H, Chen Y, Liu M et al (2011) Swarm robots: from self-assembly to locomotion. Comput J 54:1465–1474. doi:10.1093/comjnl/bxq072

    Article  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  • Whitney DE (1982) Quasi-static assembly of compliantly supported rigid parts. J Dyn Syst Measure Control Trans ASME 104:65–77

    Article  MATH  Google Scholar 

  • Whitney DE (1987) Historical perspective and state of the art in robot force feedback. Int J Robot Res 6:3–14

    Article  Google Scholar 

  • Whitney DE (2004) Mechanical assemblies: their design, manufacture, and role in product development, 1st edn. Oxford University Press, New York, NY, p 517

  • Whitney DE, Nevins JL (1982) What is the remote center compliance (RCC) and what can I do? In: Robotics today. Robotics international, society of manufacturing engineers, pp 3–15

  • Whitney DE, Gustavson RE, DeFazio TL et al (1983) Part mating theories for compliant parts. In: 10th Conference on production research and technology. SAE, Warrendale, PA, USA, Detroit, MI, Engl, pp 111–117

  • Whitney DE, Gilbert OL, Jastrzebski M (1994) Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies. Res Eng Design 6:191–210

    Article  Google Scholar 

  • Wolfe DB, Snead A, Mao C et al (2003) Mesoscale self-assembly: capillary interactions when positive and negative menisci have similar amplitudes. Langmuir 19:2206–2214

    Article  Google Scholar 

  • Wu HK, Bowden N, Whitesides GM (1999) Selectivities among capillary bonds in mesoscale self-assembly. Appl Phys Lett 75:3222–3224

    Article  Google Scholar 

  • Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713

    Article  Google Scholar 

  • Xia D, Biswas A, Li D, Brueck SRJ (2004) Directed self-assembly of silica nanoparticles into nanometer-scale patterned surfaces using spin-coating. Adv Mater 16:1427–1432

    Article  Google Scholar 

  • Xiong X, Hanein Y, Wang W et al (2001) Multi-batch micro-self-assembly via controlled capillary forces. In: Proceedings of RSJ/IEEE international conference on intelligent robots and systems. IEEE, Maui, HI, USA, pp 1335–1342

  • Xiong X, Liang S-H, Bohringer KF (2004) Geometric binding site design for surface-tension driven self-assembly. In: Proceedings 2004 IEEE international conference on robotics and automation, Apr 26–May 1 2004. IEEE, New Orleans, LA, United States, pp 1141–1148

  • Xu F, Finley TD, Turkaydin M et al (2011a) The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials 32:7847–7855. doi:10.1016/j.biomaterials.2011.07.010

    Article  Google Scholar 

  • Xu F, Wu C-AM, Rengarajan V et al (2011b) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater (Deerfield Beach, FL) 23:4254–4260. doi:10.1002/adma.201101962

    Article  Google Scholar 

  • Xu L, Karunakaran RG, Guo J, Yang S (2012) Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl Mater Interfaces 4:1118–1125. doi:10.1021/am201750h

    Article  Google Scholar 

  • Yamazaki A, Sendoh M, Ishiyama K et al (2004) Wireless micro swimming machine with magnetic thin film. J Magn Magn Mater 272–276:E1741–E1742. doi:10.1016/j.jmmm.2003.12.337

    Article  Google Scholar 

  • Yang Y, Liu J, Zhou Y-X (2008) A convective cooling enabled freeze tweezer for manipulating micro-scale objects. J Micromech Microeng 18:95008

    Article  Google Scholar 

  • Yeh H-JJ, Smith JS (1994a) Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technol Lett 6:706–708. doi:10.1109/68.300169

    Article  Google Scholar 

  • Yeh HJ, Smith JS (1994b) Fluidic self-assembly of microstructures and its application to the integration of GaAs on Si. In: Proceedings IEEE micro electro mechanical systems an investigation of micro structures, sensors, actuators, machines and robotic systems, pp 279–284. doi:10.1109/MEMSYS.1994.555822

  • Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25:527–536. doi:10.1177/0278364906065389

    Article  Google Scholar 

  • Yeung BHB, Mills JK (2004) Design of a six DOF reconfigurable gripper for flexible fixtureless assembly. IEEE Trans Syst Man Cybern Part C (Appl Rev) 34:226–235. doi:10.1109/TSMCC.2003.819704

    Article  Google Scholar 

  • Yim M, Shen W-M, Salemi B et al (2007) Modular self-reconfigurable robot systems [Grand challenges of robotics]. IEEE Robot Autom Mag 14:43–52. doi:10.1109/MRA.2007.339623

    Article  Google Scholar 

  • Yin Y, Lu Y, Gates B, Xia Y (2001) Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123:8718–8729

    Article  Google Scholar 

  • Yin P, Yan H, Daniell XG et al (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed Engl 43:4906–4911. doi:10.1002/anie.200460522

    Article  Google Scholar 

  • Yuan Z, Petsev DN, Prevo BG et al (2007) Two-dimensional nanoparticle arrays derived from ferritin monolayers. Langmuir ACS J Surf Colloids 23:5498–5504

    Article  Google Scholar 

  • Yurke B, Turberfield AJ, Mills AP et al (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608. doi:10.1038/35020524

    Article  Google Scholar 

  • Zamanian B, Masaeli M, Nichol JW et al (2010) Interface-directed self-assembly of cell-laden microgels. Small 6:937–944. doi:10.1002/smll.200902326

    Article  Google Scholar 

  • Zenin VV, Novokreshchenova EP, Khishko OV (2011) Flip-chip bump-lead fabrication: a review. Russ Microlectron 37:107–113. doi:10.1134/S1063739708020042

    Article  Google Scholar 

  • Zhe AAA, Jagtiani A, Vasudev A, Hu J, Zhe J (2011) Soft microgripping using ionic liquids for high temperature and vacuum applications. J Micromech Microeng 21:125025

    Article  Google Scholar 

  • Zheng W, Jacobs HO (2004) Shape-and-solder-directed self-assembly to package semiconductor device segments. Appl Phys Lett 85:3635

    Article  Google Scholar 

  • Zheng W, Jacobs HO (2006) Self-assembly process to integrate and connect semiconductor dies on surfaces with single-angular orientation and contact-pad registration. Adv Mater 18:1387

    Article  Google Scholar 

  • Zheng W, Buhlmann P, Jacobs HO (2004) Sequential shape-and-solder-directed self-assembly of functional microsystems. Proc Nat Acad Sci USA 101:12814–12817

    Article  Google Scholar 

  • Zheng W, Chung J, Jacobs HO (2006) Fluidic heterogeneous microsystems assembly and packaging. J Microelectromech Syst 15:864–870. doi:10.1109/JMEMS.2006.878885

    Article  Google Scholar 

  • Zhu G, Nguyen N-T (2010) Particle sorting in microfluidic systems. Micro Nanosyst 2:202–216

    Article  Google Scholar 

  • Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sens Actuators A 150:257–266. doi:10.1016/j.sna.2009.01.016

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding support though the National Science Foundation (NSF CMMI-113075 and CMMI-092637), Sandia National Laboratories, and the Florida Energy Systems Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan B. Crane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, N.B., Onen, O., Carballo, J. et al. Fluidic assembly at the microscale: progress and prospects. Microfluid Nanofluid 14, 383–419 (2013). https://doi.org/10.1007/s10404-012-1060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1060-1

Keywords

Navigation