Skip to main content
Log in

Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface

  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The influence of identical and distinct surface tensions on the coalescence and mixing of droplets after a direct collision on a wettability gradient surface (made from a self-assembled monolayer, SAM technique) was investigated. The results indicate that their mixing is driven sequentially by interior convection and diffusion; the convection endures less than 100 ms but dominates more than 60 % of the mixing. If the stationary droplet has a large surface tension (73.28 mN × m−1), whether the moving droplet has a large surface tension (73.28 mN × m−1) or a small surface tension (38.63 mN × m−1), the mushroom-shaped mixing pattern is generated within the coalesced droplet that enhances the convective mixing and also significantly enlarges the interface for mass diffusion. The mixing index of these two cases was greater than 0.8 at 120 s after the collision. For the cases in which the stationary droplet with a small surface tension collided by the moving droplet with a large surface tension, a mixing pattern with a round-head shape developed, which was insufficient to benefit the mixing. When the stationary and moving droplets both had small surface tension, the moving droplet was unable to merge with stationary droplet and had poor mixing quality due to the small surface Gibbs energy of both stationary and moving droplets. For the collision of droplets of identical surface tension, the surface tension affects the coalescence behavior; for the collision of droplets with distinct surface tension, the coalescence behavior and mixing quality depend on the colliding arrangement of stationary and moving droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baviere R, Boutet J, Fouillet Y (2008) Dynamics of droplet transport induced by electrowetting actuation. Microfluid Nanofluidics 4(4):287–294. doi:10.1007/s10404-007-0173-4

    Article  Google Scholar 

  • Blanchette F, Messio L, Bush JWM (2009) The influence of surface tension gradients on drop coalescence. Phys Fluid 21(7). doi:10.1063/1.3177339

  • Castrejon-Pita JR, Betton ES, Kubiak KJ, Wilson MCT, Hutchings IM (2011) The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics 5(1). doi:10.1063/1.3567099

  • Chaudhury MK, Whitesides GM (1992) How to make water run uphill. Science 256(5063):1539–1541

    Article  Google Scholar 

  • Chesters AK (1991) The modeling of coalescence processes in fluid liquid dispersions—a review of current understanding. Chem Eng Res Des 69(4):259–270

    Google Scholar 

  • Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromechanical Syst 12(1):70–80. doi:10.1109/jmems.2002.807467

    Article  Google Scholar 

  • Choi S, Jamshidi A, Seok TJ, Wu MC, Zohdi TI, Pisano AP (2012) Fast, high-throughput creation of size-tunable micro/nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6):3102–3111. doi:10.1021/la204362s

    Article  Google Scholar 

  • Danov KD, Denkov ND, Petsev DN, Ivanov IB, Borwankar R (1993) Coalescence dynamics of deformable brownian emulsion droplets. Langmuir 9(7):1731–1740. doi:10.1021/la00031a021

    Article  Google Scholar 

  • Darhuber AA, Valentino JP, Troian SM, Wagner S (2003) Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J Microelectromechanical Syst 12(6):873–879. doi:10.1109/jmems.2003.820267

    Article  Google Scholar 

  • Eggers J, Lister JR, Stone HA (1999) Coalescence of liquid drops. J Fluid Mech 401:293–310. doi:10.1017/s002211209900662x

    Article  MathSciNet  MATH  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluidics 3(3):245–281. doi:10.1007/s10404-007-0161-8

    Article  Google Scholar 

  • Fang W-F, Yang J-T (2009) A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sens Actuators B Chem 140(2):629–642. doi:10.1016/j.snb.2009.05.007

    Article  MathSciNet  Google Scholar 

  • Fouillet Y, Jary D, Chabrol C, Claustre P, Peponnet C (2008) Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid Nanofluidics 4(3):159–165. doi:10.1007/s10404-007-0164-5

    Article  Google Scholar 

  • Hosokawa K, Fujii T, Endo I (1999) Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 71(20):4781–4785. doi:10.1021/ac990571d

    Article  Google Scholar 

  • Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, deMello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8(8):1244–1254. doi:10.1039/b806405a

    Article  Google Scholar 

  • Ichimura K, Oh SK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288(5471):1624–1626

    Article  Google Scholar 

  • Jose BM, Cubaud T (2012) Droplet arrangement and coalescence in diverging/converging microchannels. Microfluid Nanofluidics 12(5):687–696. doi:10.1007/s10404-011-0909-z

    Article  Google Scholar 

  • Kapur N, Gaskell PH (2007) Morphology and dynamics of droplet coalescence on a surface. Phys Rev E 75(5). doi:10.1103/PhysRevE.75.056315

  • Kim J, Longmire EK (2009) Investigation of binary drop rebound and coalescence in liquids using dual-field PIV technique. Exp Fluids 47(2):263–278. doi:10.1007/s00348-009-0659-9

    Article  Google Scholar 

  • Kinoshita H, Kaneda S, Fujii T, Oshima M (2007) Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7(3):338–346. doi:10.1039/b617391h

    Article  Google Scholar 

  • Lai Y-H, Hsu M-H, Yang J-T (2010a) Enhanced mixing of droplets during coalescence on a surface with a wettability gradient. Lab Chip 10(22):3149–3156. doi:10.1039/c003729j

    Article  Google Scholar 

  • Lai Y-H, Yang J-T, Shieh D-B (2010b) A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces. Lab Chip 10(4):499–504. doi:10.1039/b917624a

    Article  Google Scholar 

  • Lu J, Corvalan CM (2012) Coalescence of viscous drops with surfactants. Chem Eng Sci 78:9–13. doi:10.1016/j.ces.2012.04.030

    Article  Google Scholar 

  • Lu HW, Bottausci F, Fowler JD, Bertozzi AL, Meinhart C, Kim CJ (2008) A study of EWOD-driven droplets by PIV investigation. Lab Chip 8(3):456–461. doi:10.1039/b717141b

    Article  Google Scholar 

  • Orme M (1997) Experiments on droplet collisions, bounce, coalescence and disruption. Prog Energy Combust Sci 23(1):65–79

    Article  Google Scholar 

  • Ortiz-Duenas C, Kim J, Longmire EK (2010) Investigation of liquid–liquid drop coalescence using tomographic PIV. Exp Fluids 49(1):111–129. doi:10.1007/s00348-009-0810-7

    Article  Google Scholar 

  • Paik P, Pamula VK, Pollack MG, Fair RB (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3(1):28–33. doi:10.1039/b210825a

    Article  Google Scholar 

  • Ruardy TG, Schakenraad JM, vanderMei HC, Busscher HJ (1997) Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surf Sci Rep 29(1):3–30. doi:10.1016/s0167-5729(97)00008-3

    Article  Google Scholar 

  • Sellier M, Trelluyer E (2009) Modeling the coalescence of sessile droplets. Biomicrofluidics 3(2). doi:10.1063/1.3154552

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651. doi:10.1126/science.1066238

    Article  Google Scholar 

  • Ting S-C, Yang J-T (2009) Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition. Phys Fluid 21(4). doi:10.1063/1.3122802

  • Tung KY, Li CC, Yang JT (2009) Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid Nanofluidics 7(4):545–557. doi:10.1007/s10404-009-0415-8

    Article  Google Scholar 

  • Wang C, Nguyen NT, Wong TN (2007) Optical measurement of flow field and concentration field inside a moving nanoliter droplet. Sens Actuators A Phys 133(2):317–322. doi:10.1016/j.sna.2006.06.026

    Article  Google Scholar 

  • Yang JT, Chen JC, Huang KJ, Yeh JA (2006) Droplet manipulation on a hydrophobic textured surface with roughened patterns. J Microelectromechanical Syst 15(3):697–707. doi:10.1109/jmems.2006.876791

    Article  Google Scholar 

  • Yang ZH, Chiu CY, Yang JT, Yeh JA (2009) Investigation and application of an ultrahydrophobic hybrid-structured surface with anti-sticking character. J Micromech Microeng 19(8). doi:10.1088/0960-1317/19/8/085022

Download references

Acknowledgments

National Science Council of Taiwan, ROC supported this work under grant number NSC-100-2120-M-002-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Tang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, SI., Fang, WF., Sheen, HJ. et al. Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface. Microfluid Nanofluid 14, 785–795 (2013). https://doi.org/10.1007/s10404-012-1096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1096-2

Keywords

Navigation