Skip to main content
Log in

Paper-based digital microfluidics

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, a new fabrication method for digital microfluidics is proposed. In which, paper, graphite, and adhesive tape are used as substrate, electrodes, and dielectric layer, respectively. The graphite is sprayed over a template on the paper substrate. Two different water repellants are used as the hydrophobic layer, which replace with expensive materials such as Teflon-AF®. The paper substrate is low cost, available, and flexible. The proposed device is disposable, and its fabrication procedure is simple, fast, and low cost which allows creation of a new device for each individual experiment. Therefore, problems such as adsorption and dielectric breakdown will not occur in this type of digital microfluidics. This device can perform two types of droplet operations, merging and moving on droplets in volumes of 15–50 μL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abdelgawad M (2009) Digital microfluidics for integrationof lab-on-a-chip devices. Dissertation, University of Toronto

  • Abdelgawad M, Wheeler AR (2007) Rapid prototyping in copper substrates for digital microfluidics. Adv Mater 19:133–137

    Article  Google Scholar 

  • Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4:349–355

    Article  Google Scholar 

  • Avam home page. http://www.avam-mk.com/en/

  • Berthier J (2008) Microdrops and digital microfluidics. William Andrew Inc, New York

    Google Scholar 

  • Chitnis G, Ding Z, Chang CL, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11(6):1161–1165

    Article  Google Scholar 

  • Cho SK, Moon H (2008) Electrowetting on dielectric (EWOD): new tool for bio/micro fluids handling. BioChip J 2:79–96

    Google Scholar 

  • Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J MEMS 12:70–80

    Article  Google Scholar 

  • Choi K, Alphonsus HC, Fobel R, Wheeler AR (2012) Digital microfluidics. Anal Chem 5:413–440

    Google Scholar 

  • Cooney C, Chen CY, Emerling M, Nadim A, Sterling J (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid 2:435–446

    Article  Google Scholar 

  • Gong J, Kim CJ (2008a) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906

    Article  Google Scholar 

  • Gong J, Kim CJ (2008b) Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. J Microelectromech Syst 17:257–264

    Article  Google Scholar 

  • Ito T, Torii T, Higuchi T (2003) Electrostatic micromanipulation of bubbles for microreactor applications. Int Conf Micro Electro Mech Syst, Presented at IEEE Annual. doi:10.1109/MEMSYS.2003.1189754

    Google Scholar 

  • Karuwan C, Sukthang K, Wisitsoraat A, Phokharatkul D et al (2011) Electrochemical detection on electrowetting on-dielectric digital microfluidic chip. Talanta 84:1384–1389

    Article  Google Scholar 

  • Klasner S, Price A, Hoeman K, Wilson R, Bell K, Culbertson C (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397(5):1821–1829

    Article  Google Scholar 

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim CJ (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A 95:259–268

    Article  Google Scholar 

  • Liu YJ, Yao DJ, Lin HC, Chang WY, Chang HY (2008) DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes. J Micromech Microeng 18:045017

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105(50):19606–19611

    Article  Google Scholar 

  • Miller EM, Wheeler AR (2009) Digital bioanalysis. Anal Bioanal Chem 393:419–426

    Article  Google Scholar 

  • Paik P, Pamula VK, Fair RB (2003a) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259

    Article  Google Scholar 

  • Paik P, Pamula VK, Pollack MG, Fair RB (2003b) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3:28–33

    Article  Google Scholar 

  • Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    Article  Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101

    Article  Google Scholar 

  • Rastogi V, Velev OD (2007) Development and evaluation of realistic microbioassays in freely suspended droplets on a chip. Biomicrofluidics 1:014107

    Article  Google Scholar 

  • Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196

    Article  Google Scholar 

  • Taniguchi T, Torii T, Higuchi T (2002) Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab Chip 2:19–23

    Article  Google Scholar 

  • Ultrakim home page. http://www.ultrakim.com/detay.aspx?Id=18

  • Washizu M (1998) Electrostatic actuation of liquid droplets for microreactor applications. IEEE Trans Ind Appl 34:732–737

    Article  Google Scholar 

  • Watson MWL, Abdelgawad M, Ye G, Yonson N, Trottier J, Wheeler AR (2006) Microcontact printing based fabrication of digital microfluidic devices. Anal Chem 78:7877–7885

    Article  Google Scholar 

  • Wheeler AR, Moon H, Kim CJ, Loo JA, Garrell RL (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76:4833–4838

    Article  Google Scholar 

  • Wheeler AR, Moon H, Bird CA, Ogorzalek Loo RR, Kim CJ et al (2005) Digital microfluidics within-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540

    Article  Google Scholar 

  • Wulff-Burchfield E, Schell WA, Eckhardt AE, Pollack MG, Hua Z et al (2010) Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagn Microbiol Infect Dis 67:22–29

    Article  Google Scholar 

  • Yi UC, Kim CJ (2005) EWOD actuation with electrode-free cover plate. Proc Int Conf Solid State Sens Actuators Microsyst IEEE 1:89–92

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Hossein Yahyaei and Dr. Mohsen Mohseni from Amirkabir University of Technology and Mr. Poursaeedi from Avam® Co. for their technical consultants about hydrophobic materials. This research is partially supported by nano electronic center of excellence, University of Tehran, and Iran National Elite Foundation (INEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Jafarabadi-Ashtiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abadian, A., Jafarabadi-Ashtiani, S. Paper-based digital microfluidics. Microfluid Nanofluid 16, 989–995 (2014). https://doi.org/10.1007/s10404-014-1345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1345-7

Keywords

Navigation