Skip to main content
Log in

Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper critically analyzes, for the first time, the effect of nanofluid on thermally fully developed magnetohydrodynamic flows through microchannel, by considering combined effects of externally applied pressure gradient and electroosmosis. The classical boundary condition of uniform wall heat flux is considered, and the effects of viscous dissipation as well as Joule heating have been taken into account. Closed-form analytical expressions for the pertinent velocity and temperature distributions and the Nusselt number variations are obtained, in order to examine the role of nanofluids in influencing the fully developed thermal transport in electroosmotic microflows under the effect of magnetic field. Fundamental considerations are invoked to ascertain the consequences of particle agglomeration on the thermophysical properties of the nanofluid. The present theoretical formalism addresses the details of the interparticle interaction kinetics in tune with the pertinent variations in the effective particulate dimensions, volume fractions of the nanoparticles, as well as the aggregate structure of the particulate system. It is revealed that the inclusion of nanofluid changes the transport characteristics and system irreversibility to a considerable extent and can have significant consequences in the design of electroosmotically actuated microfluidic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allain C, Cloitre M, Wafra M (1995) Aggregation and sedimentation in colloidal suspensions. Phys Rev Lett 74:1478–1481

    Article  Google Scholar 

  • Andreu JS, Camacho J, Faraudo J, Benelmekki M, Rebollo C, Martinez LM (2011) Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient. Phys Rev E 84:021402

    Article  Google Scholar 

  • Bejan A (2006) Convective heat transfer, 3rd edn. Wiley, India

    Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transfer 128:240–250

    Article  Google Scholar 

  • Burgreen D, Nakache FR (1964) Electrokinetic flow in ultrafine capillary slits. J Phys Chem 68:1084–1091

    Article  Google Scholar 

  • Carstoiu J (1968) Fundamental equations of electromagnetodynamics of fluids: various consequences. Proc Natl Acad Sci USA 59:326–331

    Article  Google Scholar 

  • Chakraborty S (2006) Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed pressure gradients. Int J Heat Mass Transfer 49:810–813

    Article  MATH  Google Scholar 

  • Chakraborty S, Paul D (2006) Microchannel flow control through a combined electromagnetohydrodynamic transport. J Phys D Appl Phys 39:5364–5371

    Article  Google Scholar 

  • Chakraborty S, Roy S (2008) Thermally developing electroosmotic transport of nanofluids in microchannels. Microfluid Nanofluid 4:501–511

    Article  Google Scholar 

  • Chakraborty R, Dey R, Chakraborty S (2013) Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux. Int J Heat Mass Transfer 67:1151–1162

    Article  Google Scholar 

  • Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticles. FED 231:99–103

    Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer 125:567–574

    Article  Google Scholar 

  • Das S, Chakraborty S, Mitra SK (2012) Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport. Microfluid Nanofluid 13:799–807

    Article  Google Scholar 

  • Dey R, Chakraborty D, Chakraborty S (2011) Analytical solution for thermally fully developed combined electroosmotic and pressure-driven flows in narrow confinements with thick electrical double layers. ASME J Heat Transfer 133:024503

    Article  Google Scholar 

  • Dey R, Chakraborty D, Chakraborty S (2012) Extended Graetz problem for combined electroosmotic and pressure-driven flows in narrow confinements with thick electric double layers. Int J Heat Mass Transfer 55:4724–4733

    Article  Google Scholar 

  • Dutta P, Warburton TC, Beskok A (2002) Numerical simulation of mixed electroosmotic/pressure driven flows in complex micro-geometries. J Numer Heat Transfer 41:131–148

    Article  Google Scholar 

  • Eapen J, Williams WC, Buongiorno J, Hu L, Yip S, Rusconi R, Piazza R (2007) Mean-field versus microconvection effects in nanofluid thermal conduction. Phys Rev Lett 99:095901

    Article  Google Scholar 

  • Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 324:289

    Article  Google Scholar 

  • Erickson D (2005) Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid Nanofluid 1:301–318

    Article  Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 121:5–33

    Article  Google Scholar 

  • Ganguly S, Chakraborty S (2009) Effective viscosity of nanoscale colloidal suspensions. J Appl Phys 106:124309

    Article  Google Scholar 

  • Gregory J (1996) Nanoparticles in Solid and Solutions. In: Fendler JH, Dekany I (eds) Particle aggregation: modeling and measurement. Kluwer, Boston, pp 203–220

    Google Scholar 

  • Horiuchi K, Dutta P (2004) Joule heating effects in electroosmotically driven microchannels. Int J Heat Mass Transfer 47:3085–3095

    Article  MATH  Google Scholar 

  • Hunter RJ (2001) Foundation of colloid science. Oxford University Press, New York

    Google Scholar 

  • Ibáñez G, López A, Pantoja J, Moreira J (2014) Combined effects of uniform heat flux boundary conditions and hydrodynamic slip on entropy generation in a microchannel. Int J Heat Mass Transfer 73:201–206

    Article  Google Scholar 

  • Ilis GG, Mobedi M, Sunden B (2008) Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transfer 35:696–703

    Article  Google Scholar 

  • Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 26:2457–2463

    Article  Google Scholar 

  • Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens Actuators, A 80:84–89

    Article  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, New York

    Book  Google Scholar 

  • Kakac S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transfer 52:3187–3196

    Article  MATH  Google Scholar 

  • Kaluri RS, Basak T (2011) Analysis of entropy generation for distributed heating in processing of materials by thermal convection. Int J Heat Mass Transfer 54:2578–2594

    Article  MATH  Google Scholar 

  • Levine S, Marriott JR, Neale G, Epstein N (1975) Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potentials. J Colloid Interface Sci 52:136–149

    Article  Google Scholar 

  • Li J, Kleinstreuer C (2008) Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow 29:1221–1232

    Article  Google Scholar 

  • Lim J, Lanni C, Evarts ER, Lanni F, Tilton RD, Majetich SA (2011) Magnetophoresis of nanoparticles. ACS Nano 5:217–226

    Article  Google Scholar 

  • Magherbi M, Abbasi H, Brahim AB (2003) Entropy generation at the onset of natural convection. Int J Heat Mass Transfer 46:3441–3450

    Article  MATH  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturised total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators, B 1:244–248

    Article  Google Scholar 

  • Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei 4:227–233

    Article  Google Scholar 

  • Maxwell JC (1891) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Maynes D, Webb BW (2003a) Fully developed electro-osmotic heat transfer in microchannels. Int J Heat Mass Transfer 46:1359–1369

    Article  MATH  Google Scholar 

  • Maynes D, Webb BW (2003b) Fully developed thermal transport in combined pressure and electro-osmotically driven flow in microchannels. J Heat Transfer 125:889–895

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

    Article  Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38

    Article  Google Scholar 

  • Patankar NA, Hu HH (1998) Numerical simulation of electroosmotic flow. Anal Chem 70:1870–1881

    Article  Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901

    Article  Google Scholar 

  • Prasher R, Phelan PE, Bhattacharya P (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6:1529–1534

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics. Willey, New York

    Book  Google Scholar 

  • Rawool AS, Mitra SK (2006) Numerical simulation of electroosmotic effect in serpentine channels. Microfluid Nanofluid 2:261–269

    Article  Google Scholar 

  • Reuss FF (1809) Sur un nouvel effet de l’èlectricitè galvanique. Mèmoires de la Sociex Imperiale des Naturalistes de Moscou 2: 327–337

  • Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  Google Scholar 

  • Sarkar S, Ganguly S, Dalal A (2012) Analysis of entropy generation during mixed convective heat transfer of nanofluids past a square cylinder in vertically upward flow. ASME J Heat Transfer 134:122501-1–122501-8

    Article  Google Scholar 

  • Sarkar S, Ganguly S, Dalal A (2013) Buoyancy driven flow and heat transfer of nanofluids past a square cylinder in vertically upward flow. Int J Heat Mass Transfer 59:433–450

    Article  Google Scholar 

  • Sarkar S, Ganguly S, Biswas G (2014a) Buoyancy driven convection of nanofluids in an infinitely long channel under the effect of a magnetic field. Int J Heat Mass Transfer 71:328–340

    Article  Google Scholar 

  • Sarkar S, Ganguly S, Dalal A (2014b) Analysis of entropy generation during mixed convective heat transfer of nanofluids past a rotating circular cylinder. ASME J Heat Transfer 136:062501-1–06250110

    Article  Google Scholar 

  • Soong CY, Wang SH (2003) Theoretical analysis of electrokinetic flow and heat transfer in a microchannel under asymmetric boundary conditions. J Colloid Interface Sci 265:202–213

    Article  Google Scholar 

  • Wang XW, Choi SUS, Xu XF (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13:474–480

    Article  Google Scholar 

  • Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423:156–159

    Article  Google Scholar 

  • Xuan Y, Li Q, Zhang X, Fujii M (2006) Stochastic thermal transport of nanoparticle suspensions. J Appl Phys 100:043507

    Article  Google Scholar 

  • Yang C, Li D, Masliyah JH (1998) Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. Int J Heat Mass Transf 41:4229–4249

    Article  MATH  Google Scholar 

  • Yang RJ, Fu LM, Lin YC (2001) Electroosmotic flow in microchannels. J Colloid Interface Sci 239:98–105

    Article  Google Scholar 

  • Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanopart Res 6:355–361

    Article  Google Scholar 

  • Zade AQ, Manzari MT, Hannani SK (2007) An analytical solution for thermally fully developed combined pressure-electroosmotically driven flow in microchannels. Int J Heat Mass Transfer 50:1087–1109

    Article  MATH  Google Scholar 

  • Zeng S, Chen CH, Mikkelsen JC, Santiago JG (2001) Fabrication and characterization of electro-osmotic micro-pumps. Sens Actuators, B 79:107–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvankar Ganguly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Ganguly, S. Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field. Microfluid Nanofluid 18, 623–636 (2015). https://doi.org/10.1007/s10404-014-1461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1461-4

Keywords

Navigation