Skip to main content
Log in

Enzyme SU-8 microreactors: simple tools for cell-culture monitoring

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Monitoring metabolism fluctuations inside a cell culture is a valuable method for assessment of the cells vitality. Enzyme-based biosensors can provide selective measurement of metabolites such as glucose, lactate, glutamate and choline. However, integration of these biosensors inside a cell culture is a challenging issue that can disrupt the properties of the cells microenvironment or influence the biosensors’ enzyme functioning. Herein, a technique for measuring the abovementioned metabolites in a cell culture without affecting the enzymes or the cells is presented. In this study, SU-8 is investigated as a suitable substrate for a simple enzyme immobilization. Two SU-8 microreactors are designed inside a microfluidic cartridge and functionalized with different enzymes. The implemented microreactors are used for detection of two metabolites simultaneously in a few microliters of a sample extracted from the cell-culture medium. Sub-micromolar concentrations are detectable using this device. The results of measuring variations in glucose and lactate concentration inside a cell culture, before and after exposing the cells to three different toxicants, are presented. In order to eliminate the enzymes disruption by the toxicants present inside the medium, a protocol for a toxicant-free sampling is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artursson P, Palm K, Luthman K (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46:27–43. doi:10.1016/S0169-409X(00)00128-9

    Article  Google Scholar 

  • Blagoi G, Keller S, Johansson A, Boisen A, Dufva M (2008) Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl Surf Sci 255:2896–2902. doi:10.1016/j.apsusc.2008.08.089

    Article  Google Scholar 

  • Chacey MD, Crosser MS, Crouser ED (2012) Metabolic acidosis in acetaminophen overdose without concurrent liver toxicity. Kansas J Med 5(1):12–18

    Google Scholar 

  • Chambers A et al (2010) An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev 13:546–578. doi:10.1080/10937404.2010.538657

    Article  Google Scholar 

  • Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM (2006) Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip 6:1424–1431

    Article  Google Scholar 

  • Cheng W, Klauke N, Smith G, Cooper JM (2010) Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis 31:1405–1413. doi:10.1002/elps.200900579

    Article  Google Scholar 

  • Ciobanu M, Taylor DE, Wilburn JP, Cliffel DE (2008) Glucose and lactate biosensors for scanning electrochemical microscopy imaging of single live cells. Anal Chem 80:2717–2727. doi:10.1021/ac7021184

    Article  Google Scholar 

  • Dayeh VR, Chow SL, Schirmer K, Lynn DH, Bols NC (2004) Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian cells using fluorescent dyes as indicators of cell viability. Ecotoxicol Environ Saf 57:375–382. doi:10.1016/s0147-6513(03)00083-6

    Article  Google Scholar 

  • Dayeh VR et al (2005) Comparing a ciliate and a fish cell line for their sensitivity to several classes of toxicants by the novel application of multiwell filter plates to Tetrahymena. Res Microbiol 156:93–103. doi:10.1016/j.resmic.2004.08.005

    Article  Google Scholar 

  • Deepu A, Sai VVR, Mukherji S (2009) Simple surface modification techniques for immobilization of biomolecules on SU-8. J Mater Sci Mater Med 20:25–28. doi:10.1007/s10856-008-3471-9

    Article  Google Scholar 

  • Drott J, Lindström K, Rosengren L, Laurell T (1998) Porous silicon as the carrier matrix in a micro enzyme reactor to achieve a highly efficient and long-term stable glucose sensor. In: Ehrfeld W (ed) Microreaction technology. Springer, Berlin, pp 175–182. doi:10.1007/978-3-642-72076-5_20

    Chapter  Google Scholar 

  • Eklund SE, Taylor D, Kozlov E, Prokop A, Cliffel DE (2004) A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate. Anal Chem 76:519–527. doi:10.1021/ac034641z

    Article  Google Scholar 

  • Frey O, Talaei S, van der Wal PD, Koudelka-Hep M, de Rooij NF (2010) Continuous-flow multi-analyte biosensor cartridge with controllable linear response range. Lab Chip 10:2226–2234. doi:10.1039/c004851h

    Article  Google Scholar 

  • Guilbault GG, Lubrano GJ (1973) An enzyme electrode for the amperometric determination of glucose. Anal Chim Acta 64:439–455. doi:10.1016/S0003-2670(01)82476-4

    Article  Google Scholar 

  • Joshi M, Pinto R, Rao VR, Mukherji S (2007) Silanization and antibody immobilization on SU-8. Appl Surf Sci 253:3127–3132. doi:10.1016/j.apsusc.2006.07.017

    Article  Google Scholar 

  • Kieninger J, Tamari Y, Enderle B, Sandvik JA, Pettersen EO, Urban GA (2012) Cell culture monitoring with integrated biosensors for novel insights into metabolic pathways in tumor cells. Biosensors Conference XXII Proc, Mexico

  • Kim Y, Choi K, Jung J, Park S, Kim PG, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33:370–375. doi:10.1016/j.envint.2006.11.017

    Article  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB (2002) Buxton HT (2002), Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  Google Scholar 

  • Koudelka-Hep M, Rooij N, Strike D (1997) Immobilization of enzymes on microelectrodes using chemical crosslinking. In: Bickerstaff G (ed) Immobilization of enzymes and cells. Methods in biotechnology, vol 1. Humana Press, New York, USA, pp 83–85. doi:10.1385/0-89603-386-4:83

    Chapter  Google Scholar 

  • Koyama S, Aizawa M (2008) Physical modulation of cellular information networks. In: Artmann GM, Chien S (eds) Bioengineering in cell and tissue research. Springer, Berlin, Heidelberg, pp 37–61. doi:10.1007/978-3-540-75409-1_3

    Chapter  Google Scholar 

  • Laurell T, Rosengren L (1994) A micromachined enzyme reactor in <110>-oriented silicon. Sensor Actuat B Chem 19:614–617. doi:10.1016/0925-4005(93)01112-H

    Article  Google Scholar 

  • Li MH (2008) Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 70:1796–1803. doi:10.1016/j.chemosphere.2007.08.032

    Article  Google Scholar 

  • Marie R et al (2006) Immobilisation of DNA to polymerised SU-8 photoresist. Biosens Bioelectron 21:1327–1332. doi:10.1016/j.bios.2005.03.004

    Article  Google Scholar 

  • Martinoia S, Meloni M, Parodi MT, Tedesco M, Ciccarelli C, Grattarola M (1993) Early detection of cell metabolism with a silicon microsensor. Cytotechnology 11:S86–S88. doi:10.1007/BF00746064

    Article  Google Scholar 

  • Narang U et al (1994) Glucose biosensor based on a sol–gel-derived platform. Anal Chem 66:3139–3144. doi:10.1021/ac00091a023

    Article  Google Scholar 

  • National Poisons Information Service Annual Report (2011) http://www.npis.org/NPISAnnualReport2010-11.pdf. Accessed 11 May 2014

  • Niwa O, Horiuchi T, Torimitsu K (1997) Continuous monitoring of L-glutamate released from cultured nerve cells by an online sensor coupled with micro-capillary sampling. Biosens Bioelectron 12:311–319. doi:10.1016/S0956-5663(96)00072-3

    Article  Google Scholar 

  • Queensland Govermental Public Health Guidance Note (2002) http://www.health.qld.gov.au/ph/documents/ehu/2689.pdf. Accessed 11 May 2014

  • Rowden AK, Norvell J, Eldridge DL, Kirk MA (2005) Updates on acetaminophen toxicity. Med Clin N Am 89:1145–1159. doi:10.1016/j.mcna.2005.06.009

    Article  Google Scholar 

  • Shah AD, Wood DM, Dargan PI (2011) Understanding lactic acidosis in paracetamol (acetaminophen) poisoning. Br J Clin Pharmacol 71:20–28. doi:10.1111/j.1365-2125.2010.03765.x

    Article  Google Scholar 

  • Strike DJ, Thiébaud P, van der Sluis AC, Koudelka-Hep M, de Rooij NF (1994) Glucose measurement using a micromachined open tubular heterogeneous enzyme reactor (mother). Microsyst Technol. doi:10.1007/BF01367760

    Google Scholar 

  • Strike DJ, Fiaccabrino GC, Koudelka-Hep M, de Rooij NF (2000) Enzymatic microreactor using Si, glass and EPON SU-8. Biomed Microdevices 2:175–178. doi:10.1023/A:1009972210811

    Article  Google Scholar 

  • Talaei S (2013) Microengineered analytical tools for cell-based studies in environmental monitoring, pharmacology and neuroscience. Dissertation, Ecole Polytechnique Fédérale de Lausanne

  • Talaei S, Frey O, Psoma S, van der Wal PD, de Rooij NF (2010) Smart SU-8 pillars implemented in a microfluidic bioreactor for continuous measurement of glucose. Procedia Eng 5:448–451. doi:10.1016/j.proeng.2010.09.143

    Article  Google Scholar 

  • Talaei S, van der Wal PD, de Rooij NF (2011) Microfluidic approach for simultaneous measurement of choline and glutamate neurotransmitters in in vitro monitoring of neural cells. In: Proceedings of the 15th MicroTAS conference, USA, 130–132

  • Talaei S, van der Wal PD, Ahmed S, Giazzon M, de Rooij NF (2012) Cell metabolism monitoring using a microfluidic cartridge with enzyme-based microreactors. In: Proceedings of the Biosensors conference XXII, Mexico

  • Thedinga E et al (2007) Online monitoring of cell metabolism for studying pharmacodynamic effects. Toxicol Appl Pharmacol 220:33–44. doi:10.1016/j.taap.2006.12.027

    Article  Google Scholar 

  • Thomas N, Lähdesmäki I, Parviz B (2011) Photoresist-based integration of enzyme functionality into MEMS. Microsyst Technol 17:1505–1510. doi:10.1007/s00542-011-1333-8

    Article  Google Scholar 

  • Tian F, Gourine AV, Huckstepp RTR, Dale N (2009) A microelectrode biosensor for real time monitoring of l-glutamate release. Anal Chim Acta 645:86–91. doi:10.1016/j.aca.2009.04.048

    Article  Google Scholar 

  • Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    Article  Google Scholar 

  • Vasylieva N et al (2011) Covalent enzyme immobilization by poly (ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens Bioelectron 26:3993–4000. doi:10.1016/j.bios.2011.03.012

    Article  Google Scholar 

  • Vojinović V, Calado CR, Silva AI, Mateus M, Cabral JMS, Fonseca LP (2005) Micro-analytical GO/HRP bioreactor for glucose determination and bioprocess monitoring. Biosens Bioelectron 20:1955–1961. doi:10.1016/j.bios.2004.08.015

    Article  Google Scholar 

  • Wiest J, Schmidhuber M, Ressler J, Scholz A, Brischwein M, Wolf B (2005) Cell based assays for diagnostic and therapy on multiparametric biosensor chips with an intelligent mobile lab. IFMBE Proc 10:132–135

    Google Scholar 

  • Yang B, Dukkipati VR, Li D, Cardozo BL, Pang SW (2007) Stretching and selective immobilization of DNA in SU-8 micro- and nanochannels. J Vac Sci Technol B 25:2352–2356. doi:10.1116/1.2806975

    Article  Google Scholar 

  • Yotter RA, Wilson DM (2004) Sensor technologies for monitoring metabolic activity in single cells—part II: nonoptical methods and applications. IEEE Sens J 4:412–429

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the staff at the “Microsystems Technology Division” of the CSEM for their technical assistance. Many thanks to Marta Giazzon at CSEM for the valuable comments on the cell culture experiments. This research was supported by the NanoTera “Livesense” project funded by the “Swiss National Science Foundation” (SNSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Talaei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaei, S., van der Wal, P.D., Ahmed, S. et al. Enzyme SU-8 microreactors: simple tools for cell-culture monitoring. Microfluid Nanofluid 19, 351–361 (2015). https://doi.org/10.1007/s10404-015-1562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1562-8

Keywords

Navigation