Skip to main content
Log in

Manipulation of liquid marbles

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A liquid marble is a liquid droplet coated with hydrophobic powder which enables the marble to be manipulated like a soft solid. Recently, liquid marbles have been used in applications such as microbioreactors for three-dimensional cell cultures and could be a new platform for digital microfluidics. Despite its potential significance, there is a lack of a systematic, thorough review and discussion on the manipulation schemes for liquid marbles. This paper presents past and recent manipulation schemes for liquid marbles. This paper discusses the major working principles, their advantages and drawbacks. Finally, the paper concludes with recent applications and the challenges of this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arbatan T, Al-Abboodi A et al (2012a) Tumor inside a pearl drop. Adv Healthc Mater 1(4):467–469

    Article  Google Scholar 

  • Arbatan T, Li L et al (2012b) Liquid marbles as micro-bioreactors for rapid blood typing. Adv Healthc Mater 1(1):80–83

    Article  Google Scholar 

  • Aussillous P, Quere D (2001) Liquid marbles. Nature 411(6840):924–927

    Article  Google Scholar 

  • Aussillous P, Quere D (2004) Shapes of rolling liquid drops. J Fluid Mech 512:133–151

    Article  MATH  Google Scholar 

  • Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A Math Phys Eng Sci 462(2067):973–999

    Article  MATH  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  Google Scholar 

  • Bhosale PS, Panchagnula MV (2010) On synthesizing solid polyelectrolyte microspheres from evaporating liquid marbles. Langmuir 26(13):10745–10749

    Article  Google Scholar 

  • Bhosale PS, Panchagnula MV et al (2008) Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl Phys Lett 93(3):034109

    Article  Google Scholar 

  • Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16(4):266–271

    Article  Google Scholar 

  • Bormashenko E (2012) New insights into liquid marbles. Soft Matter 8(43):11018–11021

    Article  Google Scholar 

  • Bormashenko E, Musin A (2009) Revealing of water surface pollution with liquid marbles. Appl Surf Sci 255(12):6429–6431

    Article  Google Scholar 

  • Bormashenko E, Pogreb R et al (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122

    Article  Google Scholar 

  • Bormashenko E, Bormashenko Y et al (2009a) Water rolling and floating upon water: marbles supported by a water/marble interface. J Colloid Interface Sci 333(1):419–421

    Article  Google Scholar 

  • Bormashenko E, Bormashenko Y et al (2009b) On the mechanism of floating and sliding of liquid marbles. ChemPhysChem 10(4):654–656

    Article  Google Scholar 

  • Bormashenko E, Pogreb R et al (2009c) Shape, vibrations, and effective surface tension of water marbles. Langmuir 25(4):1893–1896

    Article  Google Scholar 

  • Bormashenko E, Balter R et al. (2010a) Micropump based on liquid marbles. Appl Phys Lett 97(9):091908

    Article  Google Scholar 

  • Bormashenko E, Bormashenko Y et al (2010b) Janus droplets: liquid marbles coated with dielectric/semiconductor particles. Langmuir 27(1):7–10

    Article  Google Scholar 

  • Bormashenko E, Pogreb R et al (2010c) Interfacial and conductive properties of liquid marbles coated with carbon black. Powder Technol 203(3):529–533

    Article  Google Scholar 

  • Bormashenko E, Pogreb R et al (2012a) Stable water and glycerol marbles immersed in organic liquids: from liquid marbles to Pickering-like emulsions. J Colloid Interface Sci 366(1):196–199

    Article  Google Scholar 

  • Bormashenko E, Pogreb R et al (2012b) Electrically deformable liquid marbles. J Adhes Sci Technol 25(12):1371–1377

    Article  Google Scholar 

  • Bormashenko E, Pogreb R et al. (2012c) Composite non-stick droplets and their actuation with electric field. Appl Phys Lett 100(15):151601

    Article  Google Scholar 

  • Braun H-G, Cardoso AZ (2012) Self-assembly of Fmoc-diphenylalanine inside liquid marbles. Colloids Surf B 97:43–50

    Article  Google Scholar 

  • Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9(37):8980–8991

    Article  Google Scholar 

  • Chin JM, Reithofer MR et al (2013) Supergluing MOF liquid marbles. Chem Commun 49(5):493–495

    Article  Google Scholar 

  • Dalbe M-J, Cosic D et al. (2011) Aggregation of frictional particles due to capillary attraction. Phys Rev E 83(5):051403

    Article  Google Scholar 

  • Dandan M, Erbil HY (2009) Evaporation rate of graphite liquid marbles: comparison with water droplets. Langmuir 25(14):8362–8367

    Article  Google Scholar 

  • Doganci MD, Sesli BU et al (2011) Liquid marbles stabilized by graphite particles from aqueous surfactant solutions. Colloids Surf A 384(1–3):417–426

    Article  Google Scholar 

  • Dorvee JR, Derfus AM et al (2004) Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat Mater 3(12):896–899

    Article  Google Scholar 

  • Dupin D, Armes SP et al (2009) Stimulus-responsive liquid marbles. J Am Chem Soc 131(15):5386–5387

    Article  Google Scholar 

  • Erbil HY, McHale G et al (2002) Drop evaporation on solid surfaces: constant contact angle mode. Langmuir 18(7):2636–2641

    Article  Google Scholar 

  • Eshtiaghi N, Hapgood KP (2012) A quantitative framework for the formation of liquid marbles and hollow granules from hydrophobic powders. Powder Technol 223:65–76

    Article  Google Scholar 

  • Eshtiaghi N, Arhatari B et al (2009) Producing hollow granules from hydrophobic powders in high-shear mixer granulators. Adv Powder Technol 20(6):558–566

    Article  Google Scholar 

  • Eshtiaghi N, Liu JJS et al (2010) Formation of hollow granules from liquid marbles: small scale experiments. Powder Technol 197(3):184–195

    Article  Google Scholar 

  • Finn R (1986) Equilibrium capillary surfaces. Springer, New York

    Book  MATH  Google Scholar 

  • Fujii S, Murakami R (2008) Smart particles as foam and liquid marble stabilizers. KONA Powder Particle J 26:153–166

    Article  Google Scholar 

  • Fujii S, Kameyama S et al (2010) pH-responsive liquid marbles stabilized with poly(2-vinylpyridine) particles. Soft Matter 6(3):635–640

    Article  Google Scholar 

  • Fujii S, Suzaki M et al (2011) Liquid marbles prepared from pH-responsive sterically stabilized latex particles. Langmuir 27(13):8067–8074

    Article  Google Scholar 

  • Fujishige S, Kubota K et al (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). Journal Phys Chem 93(8):3311–3313

    Article  Google Scholar 

  • Gao L, McCarthy TJ (2007) Ionic Liquid Marbles. Langmuir 23(21):10445–10447

    Article  Google Scholar 

  • Guan Y, Meng X et al (2014) Hollow microsphere with mesoporous shell by pickering emulsion polymerization as a potential colloidal collector for organic contaminants in water. Langmuir 30(13):3681–3686

    Article  Google Scholar 

  • Hashmi A, Strauss A et al (2012) Freezing of a liquid marble. Langmuir 28(28):10324–10328

    Article  Google Scholar 

  • Inoue M, Fujii S et al (2011) pH-responsive disruption of ‘liquid marbles’ prepared from water and poly(6-(acrylamido) hexanoic acid)-grafted silica particles. Polym J 43(9):778–784

    Article  Google Scholar 

  • Kralchevsky PA, Nagayama K (2000) Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv Colloid Interface Sci 85(2–3):145–192

    Article  Google Scholar 

  • Laborie B, Lachaussee F et al (2013) How coatings with hydrophobic particles may change the drying of water droplets: incompressible surface versus porous media effects. Soft Matter 9(19):4822–4830

    Article  Google Scholar 

  • Lee DG, Kim HY (2008) Impact of a superhydrophobic sphere onto water. Langmuir 24(1):142–145

    Article  Google Scholar 

  • Mahadevan L, Pomeau Y (1999) Rolling droplets. Phys Fluids 11(9):2449–2453

    Article  MathSciNet  MATH  Google Scholar 

  • Matsukuma D, Watanabe H et al (2013) Preparation of poly(lactic-acid)-particle stabilized liquid marble and the improvement of its stability by uniform shell formation through solvent vapor exposure. RSC Adv 3(21):7862–7866

    Article  Google Scholar 

  • McEleney P, Walker GM et al (2009) Liquid marble formation using hydrophobic powders. Chem Eng J 147(2–3):373–382

    Article  Google Scholar 

  • McHale G, Shirtcliffe NJ et al. (2007) Self-organization of hydrophobic soil and granular surfaces. Appl Phys Lett 90(5):054110

    Article  Google Scholar 

  • McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7(12):5473–5481

    Article  Google Scholar 

  • Mele E, Bayer IS et al (2014) Biomimetic approach for liquid encapsulation with nanofibrillar cloaks. Langmuir 30(10):2896–2902

    Article  Google Scholar 

  • Miao YE, Lee HK et al (2014) Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chem Commun (Camb) 50(44):5923–5926

    Article  Google Scholar 

  • Nakai K, Fujii S et al (2013) Ultraviolet-light-responsive Liquid Marbles. Chem Lett 42(6):586–588

    Article  Google Scholar 

  • Newton MI, Herbertson DL et al (2007) Electrowetting of liquid marbles. J Phys D Appl Phys 40(1):20–24

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16

    Article  Google Scholar 

  • Nguyen NT (2013) Deformation of ferrofluid marbles in the presence of a permanent magnet. Langmuir 29(45):13982–13989

    Article  Google Scholar 

  • Ogawa S, Watanabe H et al (2014) Liquid marbles supported by monodisperse poly(methylsilsesquioxane) particles. Langmuir 30(30):9071–9075

    Article  Google Scholar 

  • Pike N, Richard D et al (2002) How aphids lose their marbles. Proc R Soc B Biol Sci 269(1497):1211–1215

    Article  Google Scholar 

  • Planchette C, Biance AL et al. (2013) Coalescence of armored interface under impact. Phys Fluids 25:042104

    Article  Google Scholar 

  • Richard D, Quere D (1999) Viscous drops rolling on a tilted non-wettable solid. Europhys Lett 48(3):286–291

    Article  Google Scholar 

  • Sarvi F, Jain K et al (2014) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4(1):77–86

    Article  Google Scholar 

  • Singh P, Joseph DD (2005) Fluid dynamics of floating particles. J Fluid Mech 530:31–80

    Article  MathSciNet  MATH  Google Scholar 

  • Sivan V, Tang S-Y et al (2013) Liquid metal marbles. Adv Funct Mater 23(2):144–152

    Article  Google Scholar 

  • Tan TTY, Ahsan A et al (2014) Photoresponsive liquid marbles and dry water. Langmuir 30(12):3448–3454

    Article  Google Scholar 

  • Tian J, Arbatan T et al (2010a) Liquid marble for gas sensing. Chem Commun 46(26):4734–4736

    Article  Google Scholar 

  • Tian J, Arbatan T et al (2010b) Porous liquid marble shell offers possibilities for gas detection and gas reactions. Chem Eng J 165(1):347–353

    Article  Google Scholar 

  • Tian J, Fu N et al (2013) Respirable liquid marble for the cultivation of microorganisms. Colloids Surf B 106:187–190

    Article  Google Scholar 

  • Tosun A, Erbil HY (2009) Evaporation rate of PTFE liquid marbles. Appl Surf Sci 256(5):1278–1283

    Article  Google Scholar 

  • Ueno K, Hamasaki S et al (2014) Microcapsules fabricated from liquid marbles stabilized with latex particles. Langmuir 30(11):3051–3059

    Article  Google Scholar 

  • Vallet M, Berge B et al (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37(12):2465–2470

    Article  Google Scholar 

  • Vassileva ND, van den Ende D et al (2005) capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21(24):11190–11200

    Article  Google Scholar 

  • Whitby CP, Bian X et al (2012) Spontaneous liquid marble formation on packed porous beds. Soft Matter 8(44):11336–11342

    Article  Google Scholar 

  • Whitby CP, Bian X et al (2013) Rolling, penetration and evaporation of alcohol–water drops on coarse and fine hydrophobic powders. Colloids Surf A 436:639–646

    Article  Google Scholar 

  • Wu H, Watanabe H et al (2013) Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29(48):14971–14975

    Article  Google Scholar 

  • Xue Y, Wang H et al (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22(43):4814–4818

    Article  MathSciNet  Google Scholar 

  • Yan C, Li M et al (2011) Progress in Liquid Marbles. Prog Chem 23(4):649–656

    Google Scholar 

  • Yang Z, Halvorsen E et al (2012) Power generation from conductive droplet sliding on electret film. Appl Phys Lett 100(21):213905

    Article  Google Scholar 

  • Yusa S-I, Morihara M et al (2014) Thermo-responsive liquid marbles. Polym J 46(3):145–148

    Article  Google Scholar 

  • Zang D, Chen Z et al (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9(20):5067

    Article  Google Scholar 

  • Zang D, Lin K et al (2014) Tunable shape transformation of freezing liquid water marbles. Soft Matter 10(9):1309–1314

    Article  Google Scholar 

  • Zeng H, Zhao Y (2010) Dynamic behavior of a liquid marble based accelerometer. Appl Phys Lett 96(11):114104

    Article  Google Scholar 

  • Zhang L, Cha D et al (2012) Remotely controllable liquid marbles. Adv Mater 24(35):4756–4760

    Article  Google Scholar 

  • Zhao Y, Fang J et al (2010) magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710

    Article  Google Scholar 

  • Zhao Y, Xu ZG et al (2012) Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid 13(4):555–564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, C.H., Nguyen, NT. Manipulation of liquid marbles. Microfluid Nanofluid 19, 483–495 (2015). https://doi.org/10.1007/s10404-015-1595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1595-z

Keywords

Navigation