Skip to main content
Log in

Effect of absolute pressure on flow through a textured hydrophobic microchannel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The potential of textured hydrophobic surfaces to provide substantial drag reduction has been attributed to the presence of air bubbles trapped on the surface cavities. In this paper, we present results on water flow past a textured hydrophobic surface, while systematically varying the absolute pressure close to the surface. Trapped air bubbles on the surface are directly visualized, along with simultaneous pressure drop measurements across the surface in a microchannel configuration. We find that varying the absolute pressure within the channel greatly influences the trapped air bubble behavior, causing a consequent effect on the pressure drop (drag). When the absolute pressure within the channel is maintained below atmospheric pressure, we find that the air bubbles grow in size, merge and eventually detach from the surface. This growth and subsequent merging of the air bubbles leads to a substantial increase in the pressure drop. On the other hand, a pressure above the atmospheric pressure within the channel leads to gradual shrinkage and eventual disappearance of trapped air bubbles. We find that in this case, air bubbles do cause reduction in the pressure drop with the minimum pressure drop (or maximum drag reduction) occurring when the bubbles are flush with the surface. These results show that the trapped air bubble dynamics and the pressure drop across a textured hydrophobic microchannel are very significantly dependent on the absolute pressure within the channel. The results obtained hold important implications toward achieving sustained drag reduction in microfluidic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Al-Hayes RAM, Winterton RHS (1981) Bubble growth in flowing liquids. Int J Heat Mass Transf 24:213–221

    Article  Google Scholar 

  • Bixler GD, Theiss A, Bhushan B, Lee SC (2014) Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J Colloid Interface Sci 419:114–133

    Article  Google Scholar 

  • Bobji MS, Kumar SV, Asthana A, Govardhan RN (2009) Underwater sustainability of the “Cassie” state of wetting. Langmuir 25:12120–12126

    Article  Google Scholar 

  • Bobji MS, Balan G, Govardhan RN (2011) Time dependant hydrophobicity of drag reducing surfaces. In: 3rd Micro and nano flows conference, Thessaloniki, Greece, 22–24 August 2011

  • Bormashenko E (2015) Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interface Sci 222:92–103

    Article  Google Scholar 

  • Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F (2013) Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci 402:1–18

    Article  Google Scholar 

  • Checco A, Ocko BM, Rahman A, Black CT, Tasinkevych M, Giacomello A, Dietrich S (2014) Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Phys Rev Lett 112:216101

    Article  Google Scholar 

  • Cheng Y-T, Rodak DE (2005) Is the lotus leaf superhydrophobic? Appl Phys Lett 86:144101

    Article  Google Scholar 

  • Choi CH, Westin KJA, Breuer KS (2003) Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys Fluids 15:2897–2902

    Article  Google Scholar 

  • Choi CH, Ulmanella U, Kim J, Ho CM, Kim CJ (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18:087105

    Article  Google Scholar 

  • Cong Q, Chen G, Fang Y, Ren L (2004) Super-hydrophobic characteristics of butterfly wing surface. J Bionics Eng 1:249–255

    Google Scholar 

  • Davis AMJ, Lauga E (2009) Geometric transition in friction for flow over a bubble mattress. Phys Fluids 21:011701

    Article  Google Scholar 

  • Dilip D, Jha NK, Govardhan RN, Bobji MS (2014) Controlling air solubility to maintain “Cassie” state for sustained drag reduction. Colloids Surf A Physicochem Eng Asp 459:217–224

    Article  Google Scholar 

  • Emami B, Hemeda AA, Amrei MM, Luzar A, Gad-el-Hak M, Tafreshi HV (2013) Predicting longevity of submerged superhydrophobic surfaces: surfaces with parallel grooves. Phys Fluids 25:062108

    Article  Google Scholar 

  • Epsein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509

    Article  Google Scholar 

  • Favelukis M, Tadmor Z, Talmon Y (1995) Bubble dissolution in viscous liquids in simple shear flow. AIChE J 41:2637–2641

    Article  Google Scholar 

  • Flynn MR, Bush JWM (2008) Underwater breathing: the mechanics of plastron respiration. J Fluid Mech 608:275–296

    Article  MathSciNet  MATH  Google Scholar 

  • Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature (London) 432:36

    Article  Google Scholar 

  • Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker CJ (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids 17:051701

    Article  Google Scholar 

  • Govardhan RN, Srinivas GS, Asthana A, Bobji MS (2009) Time dependence of effective slip on textured hydrophobic surfaces. Phys Fluids 21:052001

    Article  Google Scholar 

  • Hemeda AA, Tafreshi HV (2014) General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts. Langmuir 30:10317–10327

    Article  Google Scholar 

  • Hemeda AA, Gad-el-Hak M, Tafreshi HV (2014) Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves. Phys Fluids 26:082103

    Article  Google Scholar 

  • Hensel R, Finn A, Helbig R, Killge S, Braun HG, Werner C (2014) In situ experiments to reveal the role of surface feature sidewalls in the Cassie − Wenzel transition. Langmuir 30:15162–15170

    Article  Google Scholar 

  • Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature (London) 424:663

    Article  Google Scholar 

  • Hyvaluoma J, Harting J (2008) Slip flow over structured surfaces with entrapped microbubbles. Phys Rev Lett 100:246001

    Article  Google Scholar 

  • Klausner JF, Mei R, Bernhard DM, Zeng LZ (1993) Vapor bubble departure in forced convection boiling. Int J Hcat Mass Transf 36:651–662

    Article  Google Scholar 

  • Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil Trans R Soc A 367:1487–1509

    Article  Google Scholar 

  • Larmour IA, Bell SEJ, Saunders GC (2007) Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew Chem Int Ed 46:1710–1712

    Article  Google Scholar 

  • Lauga E, Stone H (2003) Effective slip in pressure-driven stokes flow. J Fluid Mech 489:55–77

    Article  MathSciNet  MATH  Google Scholar 

  • Lee C, Choi C-H, Kim CJ (2008) Structured surfaces for a giant liquid slip. Phys Rev Lett 101:064501

    Article  Google Scholar 

  • Liebermann L (1957) Air bubbles in water. J Appl Phys 28:205–211

    Article  Google Scholar 

  • Lv P, Xue Y, Shi Y, Lin H, Duan H (2014) Metastable states and wetting transition of submerged superhydrophobic structures. Phys Rev Lett 112:196101

    Article  Google Scholar 

  • Lv P, Xue Y, Liu H, Shi Y, Xi P, Lin H, Duan H (2015) Symmetric and asymmetric meniscus collapse in wetting transition on submerged structured surfaces. Langmuir 31:1248–1254

    Article  Google Scholar 

  • Mei R, Klausner JF (1992) Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity. Phys Fluids 4:63–70

    Article  MATH  Google Scholar 

  • Ou J, Rothstein JP (2005) Direct measurements on flow past drag-reducing ultrahydrophobic surfaces. Phys Fluids 17:103606

    Article  Google Scholar 

  • Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643

    Article  Google Scholar 

  • Pan Q, Wang M, Wang H (2008) Separating small amount of water and hydrophobic solvents by novel superhydrophobic meshes. Appl Surf Sci 254:6002–6006

    Article  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature (London) 414:33

    Article  Google Scholar 

  • Piao L, Park H (2015) Two-dimensional analysis of air-water interface on superhydrophobic grooves under fluctuating water pressure. Langmuir 31:8022–8032

    Article  Google Scholar 

  • Poetes R, Holtzmann K, Franze K, Steiner U (2010) Metastable Underwater Superhydrophobicity. Phys Rev Lett 105:166104

    Article  Google Scholar 

  • Rothstein P (2010) Slip on Superhydrophobic surfaces. Annu Rev Fluid Mech 42:89–109

    Article  Google Scholar 

  • Samaha MA, Tafreshi HV, Gad-el-Hak M (2012a) Effects of hydrostatic pressure on the drag reduction of submerged aerogel-particle coatings. Colloids Surf A Physicochem Eng Asp 399:62–70

    Article  Google Scholar 

  • Samaha MA, Tafreshi HV, Gad-el-Hak M (2012b) Influence of Flow on longevity of superhydrophobic coatings. Langmuir 28:9759–9766

    Article  Google Scholar 

  • Samaha MA, Tafreshi HV, Gad-el-Hak M (2012c) Superhydrophobic surfaces: from the lotus leaf to the submarine. C R Mec 340:18–34

    Article  Google Scholar 

  • Samaha MA, Tafreshi HV, Gad-el-Hak M (2012d) Sustainability of Superhydrophobicity under pressure. Phys Fluids 24:112103

    Article  Google Scholar 

  • Sheng X, Zhang J (2011) Air layer on superhydrophobic surfaces under water. Colloids Surf A Physiochem Eng Asp 377:374–378

    Article  Google Scholar 

  • Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Pyatt FB (2006) Plastron properties of a superhydrophobic surface. Appl Phys Lett 89:104106

    Article  Google Scholar 

  • Shirtcliffe NJ, McHale G, Atherton S, Newton MI (2010) An introduction to superhydrophobicity. Adv Colloid Interface Sci 161:124–138

    Article  Google Scholar 

  • Søgaard E, Andersen NK, Smistrup K, Larsen ST, Sun L, Taboryski R (2014) Study of transitions between wetting states on microcavity arrays by optical transmission microscopy. Langmuir 30:12960–12968

    Article  Google Scholar 

  • Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E (2007) High friction on a bubble mattress. Nat Mater 6:665–668

    Article  Google Scholar 

  • Teo CJ, Khoo BC (2009) Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves. Microfluid Nanofluid 7:353–382

    Article  Google Scholar 

  • Tretheway C, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9–L12

    Article  Google Scholar 

  • Truesdell R, Mammoli A, Vorobieff P, van Swol F, Jeffrey Brinker C (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97:044504

    Article  Google Scholar 

  • Verho T, Korhonen JT, Sainiemi L, Jokinen V, Bower C, Franze K, Franssila S, Andrew P, Ikkala O, Ras RH (2012) Reversible switching between superhydrophobic states on a hierarchically structured surface. Proc Natl Acad Sci 109:10210–10213

    Article  Google Scholar 

  • Wang LP, Teo CJ, Khoo BC (2014) Effect of Interface deformation on flow through microtubes containing superhydrophobic surfaces with longitudinal ribs and grooves. Microfluid Nanofluid 16:225–236

    Article  Google Scholar 

  • Watanabe K, Udagawa Y, Udagawa H (1999) Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech 381:225–238

    Article  MATH  Google Scholar 

  • Woolford B, Maynes D, Webb B (2009) Liquid flow through microchannels with grooved walls under wetting and superhydrophobic conditions. Microfluid Nanofluid 7(1):121–135

    Article  Google Scholar 

  • Xu M, Sun G, Kim CJ (2014) Infinite lifetime of underwater superhydrophobic states. Phys Rev Lett 113:136103

    Article  Google Scholar 

  • Yamada T, Hong C, Gregory OJ, Faghri M (2011) Experimental investigations of liquid flow in rib-patterned microchannels with different surface wettability. Microfluid Nanofluid 11:45–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuraman N. Govardhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 2107 kb)

Supplementary material 2 (MP4 7193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilip, D., Bobji, M.S. & Govardhan, R.N. Effect of absolute pressure on flow through a textured hydrophobic microchannel. Microfluid Nanofluid 19, 1409–1427 (2015). https://doi.org/10.1007/s10404-015-1655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1655-4

Keywords

Navigation