Skip to main content
Log in

Inkjet droplet deposition dynamics into square microcavities for OLEDs manufacturing

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The dynamics of inkjet deposition in square microcavities are investigated utilizing a three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann (LB) model with large density ratios. A geometric scheme is considered within the pseudopotential LBM framework to obtain the desired contact angles. The effects of wettability, density ratios, droplet viscosity and impact velocity are explored to reveal the droplet–microcavity interactions. With the contact angles of microcavity increasing, the physical outcomes including the crown-like shape with a small round dot, circular hollow core, uniform film and convex film are identified and analyzed. At a lower density ratio ρr = 11.6, the surrounding denser gas resists the droplet recoiling flow resulting in an increasing hollow core. The appropriate higher droplet viscosity and decreasing impact velocity are preferred which could eliminate the hollow core in the recoiling phase and accelerate the inkjet deposition process straightforward. The revelation of droplet-microcavity dynamics is beneficial for optimizing inkjet deposition process and fabricating uniform OLEDs panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006) Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys Rev E 74:021509

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Doolen GD (2003) Lattice Boltzmann method for fluid flow. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  • Connington K, Lee T (2013) Lattice Boltzmann simulations of forced wetting transitions of drops on superhydrophobic surfaces. J Comput Phys 250:601–615

    Article  Google Scholar 

  • Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414

    Article  Google Scholar 

  • Ding H, Spelt PDM (2007) Wetting condition in diffuse interface simulations of contact line motion. Phys Rev E 75:046708

    Article  Google Scholar 

  • Ding H, Theofanous TG (2011) The inertial regime of drop impact on an anisotropic porous substrate. J Fluid Mech 691:546–567

    Article  MATH  Google Scholar 

  • Dong H, Carr WW, Bucknall DG, Morris JF (2007) Temporally-resolved inkjet drop impaction on surfaces. AIChE J 53:2606–2617

    Article  Google Scholar 

  • Dupuis A, Yeomans JM (2005) Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. Langmuir 21:2624–2629

    Article  Google Scholar 

  • Enríquez OR, Meer DD (2014) Exploring droplet impact near a millimetre-sized hole: comparing a closed pit with an open-ended pore. J Fluid Mech 772:427–444

    Google Scholar 

  • Gorter H, Coenen MJJ, Slaats MWL, Ren M, Lu W, Kuijpers CJ, Groen WA (2013) Toward inkjet printing of small molecule organic light emitting diodes. Thin Solid Films 532:11–15

    Article  Google Scholar 

  • Ju Y, Kuo F, Lin Y, Huang T, Lin C (2017) Partial wetting boundary conditions on micro-structure surface for Lattice Boltzmann method. Comput Fluids 142:37–44

    Article  MathSciNet  Google Scholar 

  • Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM (2017) The lattice Boltzmann method: principles and practice. Springer, Switzerland

    Book  MATH  Google Scholar 

  • Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61:6546

    Article  MathSciNet  Google Scholar 

  • Lee T, Liu L (2010) Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. J Comput Phys 229:8045–8063

    Article  MATH  Google Scholar 

  • Li Q, Luo KH, Li XJ (2012) Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys Rev E 86:016709

    Article  Google Scholar 

  • Li Q, Luo KH, Li XJ (2013) Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys Rev E 87:053301

    Article  Google Scholar 

  • Liou T, Chan C, Fu C, Shih K (2008) Effects of impact inertia and surface characteristics on deposited polymer droplets in microcavities. J Microelectromechanical Syst 17:278–287

    Article  Google Scholar 

  • Liou T, Chan C, Shih K (2009) Study of the characteristics of polymer droplet deposition in fabricated rectangular microcavities. J Micromech Microeng 19:065028

    Article  Google Scholar 

  • Luo LS (2000) Theory of the lattice boltzmann method: lattice boltzmann models for nonideal gases. Phys Rev E 62:4982

    Article  MathSciNet  Google Scholar 

  • Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53:743

    Article  Google Scholar 

  • Miers JC, Zhou W (2017) Droplet formation at megahertz frequency. AIChE J 63:2367–2377

    Article  Google Scholar 

  • Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61–93

    Article  Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124

    Article  Google Scholar 

  • Shi Y, Tang GH, Xia HH (2015) Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins. Int J Heat Mass Transf 88:445–455

    Article  Google Scholar 

  • Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet printing of light-emitting polymer displays. MRS Bull 28:821–827

    Article  Google Scholar 

  • Subramani HJ, Al-Housseiny T, Chen AU, Li M, Basaran OA (2007) Dynamics of drop impact on a rectangular slot. Ind Eng Chem Res 46:6105–6112

    Article  Google Scholar 

  • Suh Y, Son G (2010) Numerical simulation of droplet deposition and Self-Alignment on a microstructured surface. Numer Heat Transf A Appl 57:415–430

    Article  Google Scholar 

  • Sun RG, Wang YZ, Wang DK, Zheng QB, Kyllo EM, Gustafson TL, Epstein AJ (2000) High luminescent efficiency in light-emitting polymers due to effective exciton confinement. Appl Phys Lett 76:634–636

    Article  Google Scholar 

  • Villani F, Vacca P, Nenna G, Valentino O, Burrasca G, Fasolino T, Minarini C, Della Sala D (2009) Inkjet printed polymer layer on flexible substrate for OLED applications. J Phys Chem C 113:13398–13402

    Article  Google Scholar 

  • Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation. Phys Rep 491:77–177

    Article  Google Scholar 

  • Yan YY, Zu YQ (2007) A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio. J Comput Phys 227:763–775

    Article  MathSciNet  MATH  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  MATH  Google Scholar 

  • Yokoi K, Vadillo D, Hinch J, Hutchings I (2009) Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys Fluids 21:145–148

    Article  MATH  Google Scholar 

  • Yuan P, Schaefer L (2006) Equations of state in a lattice Boltzmann model. Phys Fluids 18:042101

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Zhu Y, Cheng X (2017) Numerical investigation of multi-droplets deposited lines morphology with a multiple-relaxation-time lattice Boltzmann model. Chem Eng Sci 171:534–544

    Article  Google Scholar 

  • Zheng H, Zheng Y, Liu N, Ai N, Wang Q, Wu S, Zhou J, Hu D, Yu S, Han S (2013) All-solution processed polymer light-emitting diode displays. Nat Commun 4:1971

    Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Key Research and Development Program of China through Grant No. 2017YFB0306401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ku, T., Cheng, X. et al. Inkjet droplet deposition dynamics into square microcavities for OLEDs manufacturing. Microfluid Nanofluid 22, 47 (2018). https://doi.org/10.1007/s10404-018-2068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2068-y

Keywords

Navigation