Skip to main content
Log in

Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

It has shown that altering crosslink density of biopolymers will regulate the morphology of Mesenchymal Stem Cells (MSCs) and the subsequent MSCs differentiation. These observations have been found in a wide range of biopolymers. However, a recent work published in Nature Materials has revealed that MSCs morphology and differentiation was unaffected by crosslink density of polydimethylsiloxane (PDMS), which remains elusive. To understand such unusual behaviour, we use nanoindentation tests and modelling to characterize viscoelastic properties and surface adhesion of PDMS with different base:crosslink ratio varied from 50:1 (50D) to 10:1 (10D). It has shown that lower crosslink density leads to lower elastic moduli. Despite lower nanoindentation elastic moduli, PDMS with lowest crosslink density has higher local surface adhesion which would affect cell-biomaterials interactions. This work suggests that surface adhesion is likely another important physical cue to regulate cell-biomaterials interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, K.S., Alves, M.H., Poole-Warren, L.A., et al.: Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials 34, 7097–7105 (2013)

    Article  Google Scholar 

  2. Cui, H., Shao, J., Wang, Y., et al.: PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering. Biomacromolecules 14, 1904–1912 (2013)

    Article  Google Scholar 

  3. Ouasti, S., Donno, R., Cellesi, F., et al.: Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels. Biomaterials 32, 6456–6470 (2011)

    Article  Google Scholar 

  4. Rao, Z., Sasaki, M., Taguchi, T.: Development of amphiphilic, enzymatically-degradable PEG-peptide conjugate as cell crosslinker for spheroid formation. Colloids and Surfaces B-Biointerfaces 101, 223–227 (2013)

    Article  Google Scholar 

  5. Schmitt, S.K., Murphy, W.L., Gopalan, P.: Crosslinked PEG mats for peptide immobilization and stem cell adhesion. Journal of Materials Chemistry B 1, 1349–1360 (2013)

    Article  Google Scholar 

  6. Zustiak, S.P., Wei, Y., Leach, J.B.: Protein-hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Engineering Part B-Reviews 19, 160–171 (2013)

    Article  Google Scholar 

  7. Campbell, J.J., Bader, D.L., Lee, D.A.: Mechanical loading modulates intracellular calcium signaling in human mesenchymal stem cells. Journal of Applied Biomaterials & Biomechanics 6, 9–15 (2008)

    Google Scholar 

  8. Heywood, H.K., Sembi, P.K., Lee, D.A., et al.: Cellular utilization determines viability and matrix distribution profiles in chondrocyte-seeded alginate constructs. Tissue Engineering 10, 1467–1479 (2004)

    Article  Google Scholar 

  9. Chen, J., Irianto, J., Inamdar, S., et al.: Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment. Biophysical Journal 103, 1188–1197 (2012)

    Article  Google Scholar 

  10. Chen, J., Bader, D.L., Lee, D.A., et al.: Finite element modeling of cell deformation when chondrocyte seeded agarose is subjected to compression. In: Elhaj A., Bader D. eds., Proc. of 8th International Conference on Cell & Stem Cell Engineering, 17–20 (2011)

    Chapter  Google Scholar 

  11. Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  12. Lee, J., Abdeen, A.A., Zhang, D., et al.: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148 (2013)

    Article  Google Scholar 

  13. Trappmann, B., Gautrot, J.E., Connelly, J.T., et al.: Extracellular-matrix tethering regulates stem-cell fate. Nature Materials 11, 642–649 (2012)

    Article  Google Scholar 

  14. Panou, A.I., Papadokostaki, K.G., Tarantili, P.A., et al.: Effect of hydrophilic inclusions on PDMS crosslinking reaction and its interrelation with mechanical and water sorption properties of cured films. European Polymer Journal 49, 1803–1810 (2013)

    Article  Google Scholar 

  15. Du, P., Lu, H., Zhang, X.: Measuring the Young’s relaxation modulus of PDMS using stress relaxation nanoindentation. In: Materials Research Society Symposium Proceedings, Boston, USA, Materials Research Society (2010)

    Google Scholar 

  16. Duffy, D.C., McDonald, J.C., Schueller, O.J.A., et al.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry 70, 4974–4984 (1998)

    Article  Google Scholar 

  17. Chen, J.: Indentation-based methods to assess fracture toughness for thin coatings. Journal of Physics D-Applied Physics 45, 203001 (2012)

    Article  Google Scholar 

  18. Chen, J., Birch, M.A., Bull, S.J.: Nanomechanical characterization of tissue engineered bone grown on titanium alloy in vitro. Journal of Materials Science-Materials in Medicine 21, 277–282 (2010)

    Article  Google Scholar 

  19. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  20. Chen, J.: Understanding the nanoindentation mechanisms of a microsphere for biomedical applications. Journal of Physics D: Applied Physics 46, 495303 (2013)

    Article  Google Scholar 

  21. Manual A.S.U.s. Hibbitt, Karlsson and Sorensen, Inc. (2012)

  22. Cheng, Y.T., Yang, F.: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. Journal of Materials Research 24, 3013–3017 (2009)

    Article  Google Scholar 

  23. Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philosophical Magazine 86, 5625–5641 (2006)

    Article  Google Scholar 

  24. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and contact of elastic solids. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 324, 301–313 (1971)

    Article  Google Scholar 

  25. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on adhesion of particles. Journal of Colloid and Interface Science 53, 314–326 (1975)

    Article  Google Scholar 

  26. Maugis, D.: On the contact and adhesion of rough surfaces. Journal of Adhesion Science and Technology 10, 161–175 (1996)

    Article  Google Scholar 

  27. Mark, J.: Polymer Data Handbook. Oxford University Press, Oxford (1999)

    Google Scholar 

  28. Armani, D., Liu, C., Aluru, N.: In: Proceedings of IEEE Micro Electro Mechanical System (MEMS)’ 99, Orlando, FL. (IEEE, Piscataway, NJ), 222–227 (1999)

    Google Scholar 

  29. Wang, Z.: Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques. [Master Dissertation]. University of South Florida, Florida (2011)

    Google Scholar 

  30. Briscoe, B.J., Sebastian, K.S.: The elastoplastic response of polytmethylmethacrylate to indentation. Proc. Roy. Soc. Lond A 452, 439–457 (1996)

    Article  Google Scholar 

  31. Tweedie, C.A., Constantinides, G., Lehman, K.E., et al.: Enhanced stiffness of amorphous polymer surfaces under confinement of localized contact loads. Advanced Materials 19, 2540–2546 (2007)

    Article  Google Scholar 

  32. Tranchida, D., Piccarolo, S., Loos, J., et al.: Mechanical characterization of polymers on a nanometer scale through nanoindentation: A study on pile-up and viscoelasticity. Macromolecules 40, 1259–1267 (2007)

    Article  Google Scholar 

  33. De Silva, R.T., Pasbakhsh, P., Goh, K.L., et al.: Synthesis and characterisation of poly (lactic) acid/halloysite bionanocomposite films. Journal of Composite Materials, (2014) DOI:10.1177/0021998313513046 (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wright, K.E. & Birch, M.A. Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering. Acta Mech Sin 30, 2–6 (2014). https://doi.org/10.1007/s10409-014-0022-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0022-0

Keywords

Navigation