Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2016

11.08.2016 | Review Paper

Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives

verfasst von: Shizhao Wang, Guowei He, Xing Zhang

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Knoller, R.: Die Gesetze des Luftwiderstandes. Flugund Motortchnik(Wien) 3, 1–7 (1909) (in German) Knoller, R.: Die Gesetze des Luftwiderstandes. Flugund Motortchnik(Wien) 3, 1–7 (1909) (in German)
2.
Zurück zum Zitat Betz, A.: Ein Beitrag zur Erklarung des Segelfluges. Z. fur Flugtech. und Motorluftschiffahrt 3, 269–272 (1912) (in German) Betz, A.: Ein Beitrag zur Erklarung des Segelfluges. Z. fur Flugtech. und Motorluftschiffahrt 3, 269–272 (1912) (in German)
3.
Zurück zum Zitat Katzmayr, R.: Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils. NACA TM-147 (1922) Katzmayr, R.: Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils. NACA TM-147 (1922)
4.
Zurück zum Zitat von Kármán, T., Burgers, J.M.: Aerodynamic Theory, vol. 2. Springer, Berlin (1934) von Kármán, T., Burgers, J.M.: Aerodynamic Theory, vol. 2. Springer, Berlin (1934)
5.
Zurück zum Zitat Garrick, I.E.: Propulsion of a Flapping and Oscillating Airfoil. NACA 567 (1937) Garrick, I.E.: Propulsion of a Flapping and Oscillating Airfoil. NACA 567 (1937)
6.
Zurück zum Zitat Tuncer, I.H., Platzer, M.F.: Thrust generation due to airfoil flapping. AIAA J. 34, 324–331 (1996)CrossRefMATH Tuncer, I.H., Platzer, M.F.: Thrust generation due to airfoil flapping. AIAA J. 34, 324–331 (1996)CrossRefMATH
7.
Zurück zum Zitat Jones, K.D., Platzer, M.F.: Numerical computation of flapping-wing propulsion and power extraction. In: 35th Aerospace Sciences Meeting & Exhibit, Reno, NV (1997) Jones, K.D., Platzer, M.F.: Numerical computation of flapping-wing propulsion and power extraction. In: 35th Aerospace Sciences Meeting & Exhibit, Reno, NV (1997)
8.
Zurück zum Zitat Isogai, K., Shinmoto, Y., Watanabe, Y.: Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil. AIAA J. 37, 1145–1151 (1999)CrossRef Isogai, K., Shinmoto, Y., Watanabe, Y.: Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil. AIAA J. 37, 1145–1151 (1999)CrossRef
9.
Zurück zum Zitat Pederzani, J., Haj-Hariri, H.: Numerical analysis of heaving flexible airfoils in a viscous flow. AIAA J. 44, 2773–2779 (2006)CrossRefMATH Pederzani, J., Haj-Hariri, H.: Numerical analysis of heaving flexible airfoils in a viscous flow. AIAA J. 44, 2773–2779 (2006)CrossRefMATH
10.
Zurück zum Zitat Ramamurti, R., Sandberg, W.: Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA J. 39, 253–260 (2001)CrossRef Ramamurti, R., Sandberg, W.: Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA J. 39, 253–260 (2001)CrossRef
11.
Zurück zum Zitat Sarkar, S., Venkatraman, K.: Numerical simulation of incompressible viscous flow past a heaving airfoil. Int. J. Numer. Meth. Fluids 51, 1–29 (2006)MathSciNetCrossRefMATH Sarkar, S., Venkatraman, K.: Numerical simulation of incompressible viscous flow past a heaving airfoil. Int. J. Numer. Meth. Fluids 51, 1–29 (2006)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Sarkar, S., Venkatraman, K.: Numerical simulation of thrust generating flow past a pitching airfoil. Comput. Fluids 35, 16–42 (2006)CrossRefMATH Sarkar, S., Venkatraman, K.: Numerical simulation of thrust generating flow past a pitching airfoil. Comput. Fluids 35, 16–42 (2006)CrossRefMATH
13.
Zurück zum Zitat Tuncer, I.H., Platzer, M.F.: Computational study of flapping airfoil aerodynamics. AIAA J. Aircr. 37, 514–520 (2000)CrossRef Tuncer, I.H., Platzer, M.F.: Computational study of flapping airfoil aerodynamics. AIAA J. Aircr. 37, 514–520 (2000)CrossRef
14.
Zurück zum Zitat Tuncer, I.H., Platzer, M.F.: Thrust generation due to airfoil flapping. AIAA J. 34, 324–331 (1996)CrossRefMATH Tuncer, I.H., Platzer, M.F.: Thrust generation due to airfoil flapping. AIAA J. 34, 324–331 (1996)CrossRefMATH
15.
Zurück zum Zitat Young, J., Lai, J.C.S.: Oscillation frequency and amplitude effects on the wake of plunging airfoil. AIAA J. 42, 2042–2052 (2004)CrossRef Young, J., Lai, J.C.S.: Oscillation frequency and amplitude effects on the wake of plunging airfoil. AIAA J. 42, 2042–2052 (2004)CrossRef
16.
Zurück zum Zitat Young, J., Lai, J.C.S.: Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J. 45, 1695–1702 (2007)CrossRef Young, J., Lai, J.C.S.: Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J. 45, 1695–1702 (2007)CrossRef
17.
Zurück zum Zitat Anderson, J.M., Streitlien, K., Barrett, D.S., et al.: Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)MathSciNetCrossRefMATH Anderson, J.M., Streitlien, K., Barrett, D.S., et al.: Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Freymuth, P.: Propulsive vortical signature of plunging and pitching airfoils. AIAA J. 26, 881–883 (1988)CrossRef Freymuth, P.: Propulsive vortical signature of plunging and pitching airfoils. AIAA J. 26, 881–883 (1988)CrossRef
19.
Zurück zum Zitat Heathcote, S., Gursul, I.: Flexible flapping airfoil propulsion at low reynolds number. AIAA J. 45, 1066–1078 (2007)CrossRef Heathcote, S., Gursul, I.: Flexible flapping airfoil propulsion at low reynolds number. AIAA J. 45, 1066–1078 (2007)CrossRef
20.
Zurück zum Zitat Jones, K.D., Dohring, C.M., Platzer, M.F.: Experimental and computational investigation of the Knoller–Betz Effect. AIAA J. 36, 1240–1246 (1998)CrossRef Jones, K.D., Dohring, C.M., Platzer, M.F.: Experimental and computational investigation of the Knoller–Betz Effect. AIAA J. 36, 1240–1246 (1998)CrossRef
21.
Zurück zum Zitat Koochesfahani, M.M.: Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27, 1200–1205 (1989)CrossRef Koochesfahani, M.M.: Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27, 1200–1205 (1989)CrossRef
22.
Zurück zum Zitat Read, D.A., Hover, F.S., Triantafyllou, M.S.: Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17, 163–183 (2003)CrossRef Read, D.A., Hover, F.S., Triantafyllou, M.S.: Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17, 163–183 (2003)CrossRef
23.
Zurück zum Zitat Lauder, G.V., Anderson, E.J., Tangorra, J., et al.: Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Exp. Biol. 210, 2767–2780 (2007)CrossRef Lauder, G.V., Anderson, E.J., Tangorra, J., et al.: Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Exp. Biol. 210, 2767–2780 (2007)CrossRef
24.
Zurück zum Zitat Vandenberghe, N., Zhang, J., Childress, S.: Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506, 147–155 (2004)CrossRefMATH Vandenberghe, N., Zhang, J., Childress, S.: Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506, 147–155 (2004)CrossRefMATH
25.
Zurück zum Zitat Vandenberghe, N., Childress, S., Zhang, J.: On unidirectional flight of a free flapping wing. Phys. Fluids 18, 99–124 (2006)MathSciNetCrossRefMATH Vandenberghe, N., Childress, S., Zhang, J.: On unidirectional flight of a free flapping wing. Phys. Fluids 18, 99–124 (2006)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Alben, S., Shelley, M.J.: Coherent locomotion as an attracting state for a free flapping body. Proc. Natl. Acad. Sci. USA 102, 11163–11166 (2005)CrossRef Alben, S., Shelley, M.J.: Coherent locomotion as an attracting state for a free flapping body. Proc. Natl. Acad. Sci. USA 102, 11163–11166 (2005)CrossRef
27.
Zurück zum Zitat Lu, X.Y., Liao, Q.: Dynamic responses of a two-dimensional flapping foil motion. Phys. Fluids 18, 4173–4180 (2006) Lu, X.Y., Liao, Q.: Dynamic responses of a two-dimensional flapping foil motion. Phys. Fluids 18, 4173–4180 (2006)
28.
Zurück zum Zitat Zhang, X., Ni, S.Z., Wang, S.Z., et al.: Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil. Phys. Fluids 21, 593–598 (2009)MATH Zhang, X., Ni, S.Z., Wang, S.Z., et al.: Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil. Phys. Fluids 21, 593–598 (2009)MATH
29.
Zurück zum Zitat Deng, J., Caulfield, C.P.: Dependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flight. J. Fluid Mech. 787, 16–49 (2015)MathSciNetCrossRef Deng, J., Caulfield, C.P.: Dependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flight. J. Fluid Mech. 787, 16–49 (2015)MathSciNetCrossRef
30.
Zurück zum Zitat Hu, J., Xiao, Q.: Three-dimensional effects on the translational locomotion of a passive heaving wing. J. Fluids Struct. 46, 77–88 (2014)CrossRef Hu, J., Xiao, Q.: Three-dimensional effects on the translational locomotion of a passive heaving wing. J. Fluids Struct. 46, 77–88 (2014)CrossRef
31.
Zurück zum Zitat Spagnolie, S.E., Moret, L., Shelley, M.J., et al.: Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22, 041903 (2009)CrossRefMATH Spagnolie, S.E., Moret, L., Shelley, M.J., et al.: Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22, 041903 (2009)CrossRefMATH
32.
33.
Zurück zum Zitat Arora, N., Gupta, A., Hikaru, A., et al.: Propulsion of a plunging flexible airfoil using a torsion spring model. In: AIAA Aviation, 33rd AIAA Applied Aerodynamics Conference, Dallas (2015) Arora, N., Gupta, A., Hikaru, A., et al.: Propulsion of a plunging flexible airfoil using a torsion spring model. In: AIAA Aviation, 33rd AIAA Applied Aerodynamics Conference, Dallas (2015)
34.
Zurück zum Zitat Xiao, Q., Hu, J., Liu, H.: Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings. Bioinspir. Biomim. 9, 016008 (2014)CrossRef Xiao, Q., Hu, J., Liu, H.: Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings. Bioinspir. Biomim. 9, 016008 (2014)CrossRef
35.
Zurück zum Zitat Thiria, B., Godoy-Diana, R.: How wing compliance drives the efficiency of self-propelled flapping flyers. Phys. Rev. E 82, 015303 (2010)CrossRef Thiria, B., Godoy-Diana, R.: How wing compliance drives the efficiency of self-propelled flapping flyers. Phys. Rev. E 82, 015303 (2010)CrossRef
36.
Zurück zum Zitat Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl. Acad. Sci. USA 108, 5964–5969 (2011)CrossRef Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl. Acad. Sci. USA 108, 5964–5969 (2011)CrossRef
37.
Zurück zum Zitat Alben, S., Charles, W., Baker, T.V., et al.: Dynamics of freely swimming flexible foils. Phys. Fluids 24, 051901 (2012)CrossRefMATH Alben, S., Charles, W., Baker, T.V., et al.: Dynamics of freely swimming flexible foils. Phys. Fluids 24, 051901 (2012)CrossRefMATH
38.
Zurück zum Zitat Lee, J., Lee, S.: Fluid-structure interaction for the propulsive velocity of a flapping flexible plate at low reynolds number. Comput. Fluids 71, 348–374 (2013)MathSciNetCrossRef Lee, J., Lee, S.: Fluid-structure interaction for the propulsive velocity of a flapping flexible plate at low reynolds number. Comput. Fluids 71, 348–374 (2013)MathSciNetCrossRef
39.
Zurück zum Zitat Hua, R.N., Zhu, L.D., Lu, X.Y.: Locomotion of a flapping flexible plate. Phys. Fluids 25, 121901 (2013)CrossRef Hua, R.N., Zhu, L.D., Lu, X.Y.: Locomotion of a flapping flexible plate. Phys. Fluids 25, 121901 (2013)CrossRef
40.
Zurück zum Zitat Zhu, X.J., He, G.W., Zhang, X.: Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil. Comput. Fluids 97, 1–20 (2014)MathSciNetCrossRef Zhu, X.J., He, G.W., Zhang, X.: Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil. Comput. Fluids 97, 1–20 (2014)MathSciNetCrossRef
41.
Zurück zum Zitat Yeh, P.D., Alexeev, A.: Free swimming of an elastic plate plunging at low Reynolds number. Phys. Fluids 26, 053604 (2014)CrossRef Yeh, P.D., Alexeev, A.: Free swimming of an elastic plate plunging at low Reynolds number. Phys. Fluids 26, 053604 (2014)CrossRef
42.
Zurück zum Zitat Yeh, P.D., Alexeev, A.: Effect of aspect ratio in free-swimming plunging flexible plates. Comput. Fluids 124, 220–225 (2015)MathSciNetCrossRef Yeh, P.D., Alexeev, A.: Effect of aspect ratio in free-swimming plunging flexible plates. Comput. Fluids 124, 220–225 (2015)MathSciNetCrossRef
43.
Zurück zum Zitat Zhu, X.J., He, G.W., Zhang, X.: How flexibility affects the wake symmetry properties of a self-propelled plunging foil. J. Fluid Mech. 751, 164–183 (2014)MathSciNetCrossRef Zhu, X.J., He, G.W., Zhang, X.: How flexibility affects the wake symmetry properties of a self-propelled plunging foil. J. Fluid Mech. 751, 164–183 (2014)MathSciNetCrossRef
44.
Zurück zum Zitat Michelin, S., Smith, S.G.L.: Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902 (2009)CrossRefMATH Michelin, S., Smith, S.G.L.: Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902 (2009)CrossRefMATH
45.
Zurück zum Zitat Triantafyllou, G.S.: Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205–224 (1993)CrossRef Triantafyllou, G.S.: Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205–224 (1993)CrossRef
46.
Zurück zum Zitat Moored, K.W., Dewey, P.A., Smits, A.J., et al.: Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. J. Fluid Mech. 708, 329–348 (2012)MathSciNetCrossRefMATH Moored, K.W., Dewey, P.A., Smits, A.J., et al.: Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. J. Fluid Mech. 708, 329–348 (2012)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Moored, K.W., Dewey, P.A., Boschitsch, B.M., et al.: Linear instability mechanisms leading to optimally efficient locomotion with flexible propulsors. Phys. Fluids 26, 041905 (2014)CrossRef Moored, K.W., Dewey, P.A., Boschitsch, B.M., et al.: Linear instability mechanisms leading to optimally efficient locomotion with flexible propulsors. Phys. Fluids 26, 041905 (2014)CrossRef
48.
Zurück zum Zitat Zhu, X.J., He, G.W., Zhang, X.: Underlying principle of efficient propulsion in flexible plunging foils. Acta Mech. Sin. 30, 839–845 (2015)MathSciNetCrossRefMATH Zhu, X.J., He, G.W., Zhang, X.: Underlying principle of efficient propulsion in flexible plunging foils. Acta Mech. Sin. 30, 839–845 (2015)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10, 20130667 (2013)CrossRef Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10, 20130667 (2013)CrossRef
50.
Zurück zum Zitat Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Propagating waves in bounded elastic media: transition from standing waves to anguilliform kinematics. Europhys. Lett. 105, 54003 (2014)CrossRef Ramananarivo, S., Godoy-Diana, R., Thiria, B.: Propagating waves in bounded elastic media: transition from standing waves to anguilliform kinematics. Europhys. Lett. 105, 54003 (2014)CrossRef
51.
Zurück zum Zitat Borazjani, I., Sotiropoulos, F.: Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211, 1541–1558 (2008)CrossRef Borazjani, I., Sotiropoulos, F.: Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211, 1541–1558 (2008)CrossRef
52.
Zurück zum Zitat Borazjani, I., Sotiropoulos, F.: Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 212, 576–592 (2009)CrossRef Borazjani, I., Sotiropoulos, F.: Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 212, 576–592 (2009)CrossRef
53.
Zurück zum Zitat Bale, R., Shirgaonkar, A.A., Neveln, I.D., et al.: Separability of drag and thrust in undulatory animals and machines. Sci. Rep. 4, 7329 (2014)CrossRef Bale, R., Shirgaonkar, A.A., Neveln, I.D., et al.: Separability of drag and thrust in undulatory animals and machines. Sci. Rep. 4, 7329 (2014)CrossRef
54.
Zurück zum Zitat Maertens, A.P., Triantafyllou, M.S., Yue, D.K.: Efficiency of fish propulsion. Bioinspir. Biomim. 10, 046013 (2015)CrossRef Maertens, A.P., Triantafyllou, M.S., Yue, D.K.: Efficiency of fish propulsion. Bioinspir. Biomim. 10, 046013 (2015)CrossRef
55.
Zurück zum Zitat Bale, R., Hao, M., Bhalla, A.P., et al.: Gray’s paradox: a fluid mechanical perspective. Sci. Rep. 4, 5904 (2014) Bale, R., Hao, M., Bhalla, A.P., et al.: Gray’s paradox: a fluid mechanical perspective. Sci. Rep. 4, 5904 (2014)
56.
Zurück zum Zitat Schultz, W.W., Webb, P.W.: Power requirements of swimming: do new methods resolve old questions? Integr. Comp. Biol. 42, 1018–1025 (2002)CrossRef Schultz, W.W., Webb, P.W.: Power requirements of swimming: do new methods resolve old questions? Integr. Comp. Biol. 42, 1018–1025 (2002)CrossRef
57.
Zurück zum Zitat Kern, S., Koumoutsakos, P.: Simulations of optimized anguilliform swimming. J. Exp. Biol. 209, 4841–4857 (2006)CrossRef Kern, S., Koumoutsakos, P.: Simulations of optimized anguilliform swimming. J. Exp. Biol. 209, 4841–4857 (2006)CrossRef
58.
Zurück zum Zitat Liu, G., Yu, Y.L., Tong, B.G.: Optimal energy-utilization ratio for long-distance cruising of a model fish. Phys. Rev. E 86, 016308 (2012)CrossRef Liu, G., Yu, Y.L., Tong, B.G.: Optimal energy-utilization ratio for long-distance cruising of a model fish. Phys. Rev. E 86, 016308 (2012)CrossRef
60.
Zurück zum Zitat Tokic, G., Yue, D.K.: Optimal shape and motion of undulatory swimming organisms. Proc. R. Soc. B 279, 3065–3074 (2012)CrossRef Tokic, G., Yue, D.K.: Optimal shape and motion of undulatory swimming organisms. Proc. R. Soc. B 279, 3065–3074 (2012)CrossRef
61.
Zurück zum Zitat Weihs, D.: Hydromechanics of fish schooling. Nautre 241, 290–291 (1973)CrossRef Weihs, D.: Hydromechanics of fish schooling. Nautre 241, 290–291 (1973)CrossRef
62.
Zurück zum Zitat Zdravkovich, M.M.: Review of flow interference between two circular cylinders in various arrangements. J. Fluids Eng. 99, 618–633 (1977)CrossRef Zdravkovich, M.M.: Review of flow interference between two circular cylinders in various arrangements. J. Fluids Eng. 99, 618–633 (1977)CrossRef
63.
Zurück zum Zitat Ristroph, L., Zhang, J.: Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Letts. 101, 6797–6800 (2008)CrossRef Ristroph, L., Zhang, J.: Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Letts. 101, 6797–6800 (2008)CrossRef
65.
Zurück zum Zitat Zhu, L.D.: Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech. 635, 455–475 (2009)MathSciNetCrossRefMATH Zhu, L.D.: Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech. 635, 455–475 (2009)MathSciNetCrossRefMATH
66.
Zurück zum Zitat Kim, S., Huang, W.X., Sung, H.J.: Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511–521 (2010)CrossRefMATH Kim, S., Huang, W.X., Sung, H.J.: Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511–521 (2010)CrossRefMATH
67.
Zurück zum Zitat Uddin, E., Huang, W.X., Sung, H.J.: Interaction modes of multiple flexible flags in a uniform flow. J. Fluid Mech. 729, 563–583 (2013)MathSciNetCrossRefMATH Uddin, E., Huang, W.X., Sung, H.J.: Interaction modes of multiple flexible flags in a uniform flow. J. Fluid Mech. 729, 563–583 (2013)MathSciNetCrossRefMATH
68.
Zurück zum Zitat Wang, Z., Russell, D.: Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys. Rev. Letts. 99, 12243–12254 (2007) Wang, Z., Russell, D.: Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys. Rev. Letts. 99, 12243–12254 (2007)
69.
Zurück zum Zitat Deng, J., Shao, X.M., Yu, Z.S.: Hydrodynamic studies on two traveling wavy foils in tandem arrangement. Phys. Fluids 19, 113104 (2007)CrossRefMATH Deng, J., Shao, X.M., Yu, Z.S.: Hydrodynamic studies on two traveling wavy foils in tandem arrangement. Phys. Fluids 19, 113104 (2007)CrossRefMATH
70.
Zurück zum Zitat Uddin, E., Huang, W.X., Sung, H.J.: Actively flapping tandem flexible flags in a viscous flow. J. Fluid Mech. 780, 120–142 (2015)MathSciNetCrossRef Uddin, E., Huang, W.X., Sung, H.J.: Actively flapping tandem flexible flags in a viscous flow. J. Fluid Mech. 780, 120–142 (2015)MathSciNetCrossRef
71.
Zurück zum Zitat Tian, F.B., Wang, W.Q., Wu, J., et al.: Swimming performance and vorticity structures of a mother-calf pair of fish. Comput. Fluids 124, 1–11 (2016)MathSciNetCrossRef Tian, F.B., Wang, W.Q., Wu, J., et al.: Swimming performance and vorticity structures of a mother-calf pair of fish. Comput. Fluids 124, 1–11 (2016)MathSciNetCrossRef
72.
Zurück zum Zitat Zhu, X.J., He, G.W., Zhang, X.: Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Phys. Rev. Letts. 113, 238105 (2014)CrossRef Zhu, X.J., He, G.W., Zhang, X.: Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Phys. Rev. Letts. 113, 238105 (2014)CrossRef
73.
Zurück zum Zitat Liao, J.C., Beal, D.N., Lauder, G.V., et al.: Fish exploiting vortices decrease muscle activity. Science 302, 1566–1569 (2003)CrossRef Liao, J.C., Beal, D.N., Lauder, G.V., et al.: Fish exploiting vortices decrease muscle activity. Science 302, 1566–1569 (2003)CrossRef
74.
Zurück zum Zitat Becker, A.D., Masoud, H., Newbolt, J.W., et al.: Hydrodynamic schooling of flapping swimmers. Nat. Commun. 6, 8514 (2015)CrossRef Becker, A.D., Masoud, H., Newbolt, J.W., et al.: Hydrodynamic schooling of flapping swimmers. Nat. Commun. 6, 8514 (2015)CrossRef
75.
Zurück zum Zitat De Rosis, A.: Fluid forces enhance the performance of an aspirant leader in self-organized living groups. PLoS One 9, e114687 (2014)CrossRef De Rosis, A.: Fluid forces enhance the performance of an aspirant leader in self-organized living groups. PLoS One 9, e114687 (2014)CrossRef
76.
Zurück zum Zitat Raspa, V., Godoy-Diana, R., Thiria, B.: Topology-induced effect in biomimetic propulsive wakes. J. Fluid Mech. 729, 377–387 (2013)CrossRefMATH Raspa, V., Godoy-Diana, R., Thiria, B.: Topology-induced effect in biomimetic propulsive wakes. J. Fluid Mech. 729, 377–387 (2013)CrossRefMATH
77.
Zurück zum Zitat Webb, P.W.: The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178, 97–108 (1993) Webb, P.W.: The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. J. Exp. Biol. 178, 97–108 (1993)
78.
Zurück zum Zitat Webb, P.W.: Kinematics of plaice, Pleuronectes platessa, and cod, Gadus morhua, swimming near the bottom. J. Exp. Biol. 205, 2125–2134 (2002) Webb, P.W.: Kinematics of plaice, Pleuronectes platessa, and cod, Gadus morhua, swimming near the bottom. J. Exp. Biol. 205, 2125–2134 (2002)
79.
Zurück zum Zitat Quinn, D.B., Moored, K.W., Dewey, P.A., et al.: Unsteady propulsion near a solid boundary. J. Fluid Mech. 742, 152–170 (2014)CrossRef Quinn, D.B., Moored, K.W., Dewey, P.A., et al.: Unsteady propulsion near a solid boundary. J. Fluid Mech. 742, 152–170 (2014)CrossRef
80.
Zurück zum Zitat Quinn, D.B., Lauder, G.V., Smits, A.J.: Flexible propulsors in ground effect. Bioinspir. Biomim. 9, 036008 (2014)CrossRef Quinn, D.B., Lauder, G.V., Smits, A.J.: Flexible propulsors in ground effect. Bioinspir. Biomim. 9, 036008 (2014)CrossRef
81.
Zurück zum Zitat Fernandez-Prats, R., Raspa, V., Thiria, B., et al.: Large-amplitude undulatory swimming near a wall. Bioinspir. Biomim. 10, 016003 (2015)CrossRef Fernandez-Prats, R., Raspa, V., Thiria, B., et al.: Large-amplitude undulatory swimming near a wall. Bioinspir. Biomim. 10, 016003 (2015)CrossRef
82.
Zurück zum Zitat Blevins, E.L., Lauder, G.V.: Swimming near the substrate: a simple robotic model of stingray locomotion. Bioinspir. Biomim. 8, 016005 (2013)CrossRef Blevins, E.L., Lauder, G.V.: Swimming near the substrate: a simple robotic model of stingray locomotion. Bioinspir. Biomim. 8, 016005 (2013)CrossRef
83.
Zurück zum Zitat Bottom II, R.G., Borazjani, I., Blevins, E.L., et al.: Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J. Fluid Mech. 788, 407–443 (2016)MathSciNetCrossRef Bottom II, R.G., Borazjani, I., Blevins, E.L., et al.: Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J. Fluid Mech. 788, 407–443 (2016)MathSciNetCrossRef
84.
Zurück zum Zitat Zhu, L.L., Guan, H., Wu, C.J.: A study of a three-dimensional self-propelled flying bird with flapping wings. Sci. China Ser. G 58, 1–16 (2015)MathSciNet Zhu, L.L., Guan, H., Wu, C.J.: A study of a three-dimensional self-propelled flying bird with flapping wings. Sci. China Ser. G 58, 1–16 (2015)MathSciNet
Metadaten
Titel
Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives
verfasst von
Shizhao Wang
Guowei He
Xing Zhang
Publikationsdatum
11.08.2016
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2016
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-016-0578-y

Weitere Artikel der Ausgabe 6/2016

Acta Mechanica Sinica 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.