Skip to main content
Erschienen in: Acta Mechanica Sinica 1/2018

20.06.2017 | Research Paper

High-precision solution to the moving load problem using an improved spectral element method

verfasst von: Shu-Rui Wen, Zhi-Jing Wu, Nian-Li Lu

Erschienen in: Acta Mechanica Sinica | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yau, J.D., Yang, Y.B., Kuo, S.R.: Impact response of high speed rail bridges and riding comfort of rail cars. Eng. Struct. 21, 836–844 (1999)CrossRef Yau, J.D., Yang, Y.B., Kuo, S.R.: Impact response of high speed rail bridges and riding comfort of rail cars. Eng. Struct. 21, 836–844 (1999)CrossRef
2.
Zurück zum Zitat Wu, Y.S., Yang, Y.B.: Steady-state response and riding comfort of trains moving over a series of simply supported bridges. Eng. Struct. 25, 251–265 (2003)CrossRef Wu, Y.S., Yang, Y.B.: Steady-state response and riding comfort of trains moving over a series of simply supported bridges. Eng. Struct. 25, 251–265 (2003)CrossRef
3.
Zurück zum Zitat Konstantakopoulos, T.G., Raftoyiannis, I.G., Michaltsos, G.T.: Suspended bridges subjected to earthquake and moving loads. Eng. Struct. 45, 223–237 (2012)CrossRef Konstantakopoulos, T.G., Raftoyiannis, I.G., Michaltsos, G.T.: Suspended bridges subjected to earthquake and moving loads. Eng. Struct. 45, 223–237 (2012)CrossRef
4.
Zurück zum Zitat Fu, S., Cui, W.: Dynamic responses of a ribbon floating bridge under moving loads. Mar. Struct. 29, 246–256 (2012)CrossRef Fu, S., Cui, W.: Dynamic responses of a ribbon floating bridge under moving loads. Mar. Struct. 29, 246–256 (2012)CrossRef
5.
Zurück zum Zitat Boschetti, G., Caracciolo, R., Richiedei, D., et al.: Moving the suspended load of an overhead crane along a pre-specified path: a non-time based approach. Robot. Comput. Integr. Manuf. 30, 256–264 (2014)CrossRef Boschetti, G., Caracciolo, R., Richiedei, D., et al.: Moving the suspended load of an overhead crane along a pre-specified path: a non-time based approach. Robot. Comput. Integr. Manuf. 30, 256–264 (2014)CrossRef
6.
Zurück zum Zitat Yang, W., Zhang, Z., Shen, R.: Modeling of system dynamics of a slewing flexible beam with moving payload pendulum. Mech. Res. Commun. 34, 260–266 (2007)CrossRefMATH Yang, W., Zhang, Z., Shen, R.: Modeling of system dynamics of a slewing flexible beam with moving payload pendulum. Mech. Res. Commun. 34, 260–266 (2007)CrossRefMATH
7.
Zurück zum Zitat Karttunen, A.T., Hertzen, R.: Dynamic response of a cylinder cover under a moving load. Int. J. Mech. Sci. 82, 170–178 (2014)CrossRef Karttunen, A.T., Hertzen, R.: Dynamic response of a cylinder cover under a moving load. Int. J. Mech. Sci. 82, 170–178 (2014)CrossRef
8.
Zurück zum Zitat Dyniewicz, B.: Space-time finite element approach to general description of a moving inertial load. Finite Elem. Anal. Des. 62, 8–17 (2012)MathSciNetCrossRef Dyniewicz, B.: Space-time finite element approach to general description of a moving inertial load. Finite Elem. Anal. Des. 62, 8–17 (2012)MathSciNetCrossRef
9.
Zurück zum Zitat Kidarsa, A., Scott, M.H., Higgins, C.C.: Analysis of moving loads using force-based finite elements. Finite Elem. Anal. Des. 44, 214–224 (2008)CrossRef Kidarsa, A., Scott, M.H., Higgins, C.C.: Analysis of moving loads using force-based finite elements. Finite Elem. Anal. Des. 44, 214–224 (2008)CrossRef
10.
Zurück zum Zitat Nguyen, V.H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates. Part 1: infinite bar under moving axial loads. Comput. Struct. 84, 1368–1380 (2006)CrossRef Nguyen, V.H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates. Part 1: infinite bar under moving axial loads. Comput. Struct. 84, 1368–1380 (2006)CrossRef
11.
Zurück zum Zitat Nguyen, V.H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates. Part II: infinite beam under moving harmonic loads. Comput. Struct. 86, 2056–2063 (2008)CrossRef Nguyen, V.H., Duhamel, D.: Finite element procedures for nonlinear structures in moving coordinates. Part II: infinite beam under moving harmonic loads. Comput. Struct. 86, 2056–2063 (2008)CrossRef
12.
Zurück zum Zitat Yang, B., Tan, C.A., Bergman, L.A.: Direct numerical procedure for solution of moving oscillator problems. J. Eng. Mech. 126, 462–469 (2000)CrossRef Yang, B., Tan, C.A., Bergman, L.A.: Direct numerical procedure for solution of moving oscillator problems. J. Eng. Mech. 126, 462–469 (2000)CrossRef
13.
Zurück zum Zitat Yang, Y.B., Lin, C.L., Yau, J.D., et al.: Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings. J. Sound Vibr. 269, 345–360 (2004)CrossRef Yang, Y.B., Lin, C.L., Yau, J.D., et al.: Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings. J. Sound Vibr. 269, 345–360 (2004)CrossRef
14.
Zurück zum Zitat Doyle, J.F., Farris, T.N.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 5, 99–107 (1990) Doyle, J.F., Farris, T.N.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 5, 99–107 (1990)
15.
Zurück zum Zitat Doyle, J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd edn. Springer, New York (1997) Doyle, J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd edn. Springer, New York (1997)
16.
Zurück zum Zitat Hong, M., Park, I., Lee, U.: Dynamics and waves characteristics of the FGM axial bars by using spectral element method. Compos. Struct. 107, 585–593 (2014)CrossRef Hong, M., Park, I., Lee, U.: Dynamics and waves characteristics of the FGM axial bars by using spectral element method. Compos. Struct. 107, 585–593 (2014)CrossRef
17.
Zurück zum Zitat Nanda, N., Kapuria, S., Gopalakrishnan, S.: Spectral finite element based on an efficient layerwise theory for wave propagation analysis of composite and sandwich beams. J. Sound Vib. 333, 3120–3137 (2014)CrossRef Nanda, N., Kapuria, S., Gopalakrishnan, S.: Spectral finite element based on an efficient layerwise theory for wave propagation analysis of composite and sandwich beams. J. Sound Vib. 333, 3120–3137 (2014)CrossRef
18.
Zurück zum Zitat Wu, Z.J., Li, F.M., Wang, Y.Z.: Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013)CrossRef Wu, Z.J., Li, F.M., Wang, Y.Z.: Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013)CrossRef
19.
Zurück zum Zitat Lee, U.: Equivalent continuum representation of lattice beams: spectral element approach. Eng. Struct. 20, 587–592 (1998)CrossRef Lee, U.: Equivalent continuum representation of lattice beams: spectral element approach. Eng. Struct. 20, 587–592 (1998)CrossRef
20.
21.
Zurück zum Zitat Santos, E.R.O., Arruda, J.R.F., Dos Santos, J.M.C.: Modeling of coupled structural systems by an energy spectral element method. J. Sound Vib. 316, 1–24 (2008)CrossRef Santos, E.R.O., Arruda, J.R.F., Dos Santos, J.M.C.: Modeling of coupled structural systems by an energy spectral element method. J. Sound Vib. 316, 1–24 (2008)CrossRef
22.
Zurück zum Zitat Lee, U.: Dynamic characterization of the joints in a beam structure by using spectral element method. Shock Vib. 8, 357–366 (2001)CrossRef Lee, U.: Dynamic characterization of the joints in a beam structure by using spectral element method. Shock Vib. 8, 357–366 (2001)CrossRef
23.
Zurück zum Zitat Wang, Y.Z., Li, F.M., Huang, W.H., et al.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)CrossRefMATH Wang, Y.Z., Li, F.M., Huang, W.H., et al.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)CrossRefMATH
24.
Zurück zum Zitat Wang, Y.Z., Li, F.M., Huang, W.H., et al.: Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. Int. J. Solids Struct. 45, 4203–4210 (2008)CrossRefMATH Wang, Y.Z., Li, F.M., Huang, W.H., et al.: Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. Int. J. Solids Struct. 45, 4203–4210 (2008)CrossRefMATH
25.
Zurück zum Zitat Wu, Z.J., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control 22, 710–721 (2016)MathSciNetCrossRef Wu, Z.J., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control 22, 710–721 (2016)MathSciNetCrossRef
26.
Zurück zum Zitat Wu, Z.J., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)CrossRef Wu, Z.J., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)CrossRef
27.
Zurück zum Zitat Wen, S.R., Lu, N.L., Wu, Z.J.: Dynamic property analysis of the space-frame structure using the spectral element method. Waves Random Complex Media 24, 404–420 (2014)CrossRefMATH Wen, S.R., Lu, N.L., Wu, Z.J.: Dynamic property analysis of the space-frame structure using the spectral element method. Waves Random Complex Media 24, 404–420 (2014)CrossRefMATH
28.
Zurück zum Zitat Pesterev, A.V., Tan, C.A., Bergman, L.A.: A new method for calculating bending moment and shear force in moving load problems. J. Appl. Mech. Trans. ASME 68, 252–259 (2001)CrossRefMATH Pesterev, A.V., Tan, C.A., Bergman, L.A.: A new method for calculating bending moment and shear force in moving load problems. J. Appl. Mech. Trans. ASME 68, 252–259 (2001)CrossRefMATH
29.
Zurück zum Zitat Pesterev, A.V., Bergman, L.A.: An improved series expansion of the solution to the moving oscillator problem. J. Vib. Acoust. Trans. ASME 122, 54–61 (2000)CrossRef Pesterev, A.V., Bergman, L.A.: An improved series expansion of the solution to the moving oscillator problem. J. Vib. Acoust. Trans. ASME 122, 54–61 (2000)CrossRef
30.
Zurück zum Zitat Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)MATH Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)MATH
31.
Zurück zum Zitat Ouyang, H.J.: Moving-load dynamic problems: a tutorial (with a brief overview). Mech. Syst. Signal Proc. 25, 2039–2060 (2011)CrossRef Ouyang, H.J.: Moving-load dynamic problems: a tutorial (with a brief overview). Mech. Syst. Signal Proc. 25, 2039–2060 (2011)CrossRef
32.
Zurück zum Zitat Frýba, L.: Vibration of Solids and Structures Under Moving Loads, 3rd ed. Thomas Telford Ltd., London (1999) Frýba, L.: Vibration of Solids and Structures Under Moving Loads, 3rd ed. Thomas Telford Ltd., London (1999)
33.
Zurück zum Zitat Lou, P., Au, F.T.K.: Finite element formulae for internal forces of Bernoulli–Euler beams under moving vehicles. J. Sound Vib. 332, 1533–1552 (2013)CrossRef Lou, P., Au, F.T.K.: Finite element formulae for internal forces of Bernoulli–Euler beams under moving vehicles. J. Sound Vib. 332, 1533–1552 (2013)CrossRef
34.
Zurück zum Zitat Lian, Y.P., Zhang, X., Liu, Y.: An adaptive finite element material point method and its application in extreme deformation problems. Comput. Meth. Appl. Mech. Eng. 241–244, 275–285 (2012) Lian, Y.P., Zhang, X., Liu, Y.: An adaptive finite element material point method and its application in extreme deformation problems. Comput. Meth. Appl. Mech. Eng. 241–244, 275–285 (2012)
35.
Zurück zum Zitat Palma, R., Pérez-Aparicio, J.L., Taylor, R.L.: Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput. Meth. Appl. Mech. Eng. 213–216, 93–103 (2012)MathSciNetCrossRefMATH Palma, R., Pérez-Aparicio, J.L., Taylor, R.L.: Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput. Meth. Appl. Mech. Eng. 213–216, 93–103 (2012)MathSciNetCrossRefMATH
Metadaten
Titel
High-precision solution to the moving load problem using an improved spectral element method
verfasst von
Shu-Rui Wen
Zhi-Jing Wu
Nian-Li Lu
Publikationsdatum
20.06.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 1/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0678-3

Weitere Artikel der Ausgabe 1/2018

Acta Mechanica Sinica 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.