Skip to main content
Erschienen in: Acta Mechanica Sinica 1/2018

16.10.2017 | Research Paper

Adaptive ANCF method and its application in planar flexible cables

verfasst von: Yue Zhang, Cheng Wei, Yang Zhao, Chunlin Tan, Yongjian Liu

Erschienen in: Acta Mechanica Sinica | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the conventional absolute nodal coordinate formulation (ANCF), the model is pre-meshed, the number, distribution and type of elements are unchangeable during the simulation. In addition, the deformations of a flexible body are space-varying and time-varying, one cannot predict when, where, and how the deformations will occur. Therefore, in order to obtain a satisfactory accuracy during the whole simulation, the model is usually densely meshed, but it will result in a loss of computational efficiency. In this study, an adaptive absolute nodal coordinate formulation (AANCF) is proposed to optimize the accuracy and efficiency of flexible dynamics. The movement features of flexible bodies are analyzed, and the conventional and adaptive ANCF methods are compared. Then the adaptive computation strategy is presented. The discretization errors come from the inability of interpolation functions of individual elements to capture the complexity of the exact solution, so the mesh can be adaptively optimized by changing the element sizes or the orders of interpolation functions during dynamic computation. Important issues of AANCF, including error estimation, mesh updating, and performance of the AANCF model, are analyzed and discussed in detail. A theoretical model of a planar AANCF cable is presented, where the strategies of dividing and merging elements are discussed. Moreover, the continuity of dynamic variables is deduced, and the mean factors that affect the continuity are obtained, which is very important for the subsequent continuity optimization. The simulation results indicate that the distribution of elements varies with time and space, and the elements are denser in large-deformed domains. The AANCF model improved the computational accuracy and efficiency, but the system energy is discontinuous when the elements are merged. Therefore, a continuity-optimized AANCF model is given based on the previous continuity analysis, the results show that the accuracy and continuity of energy are further improved by the continuity-optimized AANCF model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–613 (2003)CrossRef Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–613 (2003)CrossRef
2.
Zurück zum Zitat Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)CrossRefMATH Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)CrossRefMATH
3.
Zurück zum Zitat Shabana, A.A.: An Absolute Nodal Coordinate Formulation for the Large Rotation and Large Deformation Analysis of Flexible Bodies. Technical Report No. MBS96-1-UIC (1996) Shabana, A.A.: An Absolute Nodal Coordinate Formulation for the Large Rotation and Large Deformation Analysis of Flexible Bodies. Technical Report No. MBS96-1-UIC (1996)
4.
Zurück zum Zitat Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10, 054506 (2015)CrossRef Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10, 054506 (2015)CrossRef
5.
Zurück zum Zitat Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)CrossRef Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)CrossRef
6.
Zurück zum Zitat Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2000)CrossRef Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2000)CrossRef
7.
Zurück zum Zitat Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)CrossRefMATH Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)CrossRefMATH
8.
Zurück zum Zitat Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)CrossRef Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)CrossRef
9.
Zurück zum Zitat Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 221, 219–231 (2007) Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 221, 219–231 (2007)
10.
Zurück zum Zitat Liu, C., Tian, Q., Hu, H.: New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation. Nonlinear Dyn. 70, 1903–1918 (2012)MathSciNetCrossRef Liu, C., Tian, Q., Hu, H.: New spatial curved beam and cylindrical shell elements of gradient-deficient Absolute Nodal Coordinate Formulation. Nonlinear Dyn. 70, 1903–1918 (2012)MathSciNetCrossRef
11.
Zurück zum Zitat Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 219, 345–355 (2005) Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 219, 345–355 (2005)
12.
Zurück zum Zitat Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)MathSciNetCrossRefMATH Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Abbas, L., Rui, X., Hammoudi, Z.: Plate/shell element of variable thickness based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 224, 127–141 (2010) Abbas, L., Rui, X., Hammoudi, Z.: Plate/shell element of variable thickness based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 224, 127–141 (2010)
14.
Zurück zum Zitat Olshevskiy, A., Dmitrochenko, O., Dai, M.D., et al.: The simplest 3-, 6-and 8-noded fully-parameterized ANCF plate elements using only transverse slopes. Multibody Syst. Dyn. 34, 23–51 (2014)MathSciNetCrossRefMATH Olshevskiy, A., Dmitrochenko, O., Dai, M.D., et al.: The simplest 3-, 6-and 8-noded fully-parameterized ANCF plate elements using only transverse slopes. Multibody Syst. Dyn. 34, 23–51 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Olshevskiy, A., Dmitrochenko, O., Kim, C.-W.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 9, 021001 (2014)CrossRef Olshevskiy, A., Dmitrochenko, O., Kim, C.-W.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 9, 021001 (2014)CrossRef
16.
Zurück zum Zitat Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.M.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43, 239–256 (2006)CrossRefMATH Kerkkänen, K.S., García-Vallejo, D., Mikkola, A.M.: Modeling of belt-drives using a large deformation finite element formulation. Nonlinear Dyn. 43, 239–256 (2006)CrossRefMATH
17.
Zurück zum Zitat Čepon, G., Boltežar, M.: Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. J. Sound Vib. 319, 1019–1035 (2009)CrossRef Čepon, G., Boltežar, M.: Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. J. Sound Vib. 319, 1019–1035 (2009)CrossRef
18.
Zurück zum Zitat Čepon, G., Manin, L., Boltežar, M.: Introduction of damping into the flexible multibody belt-drive model: a numerical and experimental investigation. J. Sound Vib. 324, 283–296 (2009)CrossRef Čepon, G., Manin, L., Boltežar, M.: Introduction of damping into the flexible multibody belt-drive model: a numerical and experimental investigation. J. Sound Vib. 324, 283–296 (2009)CrossRef
19.
Zurück zum Zitat Lugris, U., Escalona, J., Dopico, D., et al.: Efficient and accurate simulation of the Cable–Pulley interaction in weight-lifting machines. In: 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, May 25–27 (2010) Lugris, U., Escalona, J., Dopico, D., et al.: Efficient and accurate simulation of the Cable–Pulley interaction in weight-lifting machines. In: 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, May 25–27 (2010)
20.
Zurück zum Zitat Lee, J.-H., Park, T.-W.: Development of a three-dimensional catenary model using cable elements based on absolute nodal coordinate formulation. J. Mech. Sci. Technol. 26, 3933–3941 (2012)CrossRef Lee, J.-H., Park, T.-W.: Development of a three-dimensional catenary model using cable elements based on absolute nodal coordinate formulation. J. Mech. Sci. Technol. 26, 3933–3941 (2012)CrossRef
21.
Zurück zum Zitat Tur, M., García, E., Baeza, L., et al.: A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Eng. Struct. 71, 234–243 (2014)CrossRef Tur, M., García, E., Baeza, L., et al.: A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Eng. Struct. 71, 234–243 (2014)CrossRef
22.
Zurück zum Zitat Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10, 024504 (2015)CrossRef Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10, 024504 (2015)CrossRef
23.
Zurück zum Zitat Yu, Z., Liu, Y., Tinsley, B., et al.: Integration of geometry and analysis for vehicle system applications: continuum-based leaf spring and tire assembly. J. Comput. Nonlinear Dyn. 11, 031011 (2015)CrossRef Yu, Z., Liu, Y., Tinsley, B., et al.: Integration of geometry and analysis for vehicle system applications: continuum-based leaf spring and tire assembly. J. Comput. Nonlinear Dyn. 11, 031011 (2015)CrossRef
24.
Zurück zum Zitat Wei, C., Wang, L., Shabana, A.A.: A total lagrangian ANCF liquid sloshing approach for multibody system applications. J. Comput. Nonlinear Dyn. 10, 051014 (2015)CrossRef Wei, C., Wang, L., Shabana, A.A.: A total lagrangian ANCF liquid sloshing approach for multibody system applications. J. Comput. Nonlinear Dyn. 10, 051014 (2015)CrossRef
25.
Zurück zum Zitat Dow, J.O.: The Essentials of Finite Element Modeling and Adaptive Refinement. Momentum Press, New York (2012) Dow, J.O.: The Essentials of Finite Element Modeling and Adaptive Refinement. Momentum Press, New York (2012)
26.
Zurück zum Zitat Babuska, I., Miller, A.: A-posteriori error estimates and adaptive techniques for the finite element method. In: DTIC Document (1981) Babuska, I., Miller, A.: A-posteriori error estimates and adaptive techniques for the finite element method. In: DTIC Document (1981)
27.
Zurück zum Zitat Basu, P.K., Peano, A.: Adaptivity in p-version finite element analysis. J. Struct. Eng. 109, 2310–2324 (1983)CrossRef Basu, P.K., Peano, A.: Adaptivity in p-version finite element analysis. J. Struct. Eng. 109, 2310–2324 (1983)CrossRef
28.
Zurück zum Zitat Babusška, I.: Accuracy Estimates and Adaptive Refinements in Finite Element Computations. Wiley, New York (1986) Babusška, I.: Accuracy Estimates and Adaptive Refinements in Finite Element Computations. Wiley, New York (1986)
29.
Zurück zum Zitat Li, L.-Y., Bettess, P.: Adaptive finite element methods: a review. Appl. Mech. Rev. 50, 581–591 (1997)CrossRef Li, L.-Y., Bettess, P.: Adaptive finite element methods: a review. Appl. Mech. Rev. 50, 581–591 (1997)CrossRef
30.
Zurück zum Zitat Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)CrossRefMATH Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)CrossRefMATH
31.
Zurück zum Zitat Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)CrossRefMATH Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)CrossRefMATH
32.
Zurück zum Zitat Zienkiewicz, O., Zhu, J.Z.: Error estimates and adaptive refinement for plate bending problems. Int. J. Numer. Methods Eng. 28, 2839–2853 (1989) Zienkiewicz, O., Zhu, J.Z.: Error estimates and adaptive refinement for plate bending problems. Int. J. Numer. Methods Eng. 28, 2839–2853 (1989)
33.
Zurück zum Zitat Zhu, J., Zienkiewicz, O.: Superconvergence recovery technique and a posteriori error estimators. Int. J. Numer. Methods Eng. 30, 1321–1339 (1990)MathSciNetCrossRefMATH Zhu, J., Zienkiewicz, O.: Superconvergence recovery technique and a posteriori error estimators. Int. J. Numer. Methods Eng. 30, 1321–1339 (1990)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Ainsworth, M., Zhu, J., Craig, A., et al.: Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method. Int. J. Numer. Methods Eng. 28, 2161–2174 (1989)MathSciNetCrossRefMATH Ainsworth, M., Zhu, J., Craig, A., et al.: Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method. Int. J. Numer. Methods Eng. 28, 2161–2174 (1989)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Choudhary, S., Grosse, I.: Effective stress-based finite element error estimation for composite bodies. Comput. Struct. 48, 493–503 (1993)CrossRefMATH Choudhary, S., Grosse, I.: Effective stress-based finite element error estimation for composite bodies. Comput. Struct. 48, 493–503 (1993)CrossRefMATH
36.
Zurück zum Zitat Demkowicz, L., Devloo, P., Oden, J.T.: On an h-type mesh-refinement strategy based on minimization of interpolation errors. Comput. Methods Appl. Mech. Eng. 53, 67–89 (1985)MathSciNetCrossRefMATH Demkowicz, L., Devloo, P., Oden, J.T.: On an h-type mesh-refinement strategy based on minimization of interpolation errors. Comput. Methods Appl. Mech. Eng. 53, 67–89 (1985)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Szabo, B.A.: Implementation of a finite element software system with H and P extension capabilities. Finite Elem. Anal. Des. 2, 177–194 (1986)CrossRef Szabo, B.A.: Implementation of a finite element software system with H and P extension capabilities. Finite Elem. Anal. Des. 2, 177–194 (1986)CrossRef
38.
Zurück zum Zitat Paulino, G.H., Shi, F., Mukherjee, S., et al.: Nodal sensitivities as error estimates in computational mechanics. Acta Mech. 121, 191–213 (1997)CrossRefMATH Paulino, G.H., Shi, F., Mukherjee, S., et al.: Nodal sensitivities as error estimates in computational mechanics. Acta Mech. 121, 191–213 (1997)CrossRefMATH
39.
Zurück zum Zitat Shephard, M.S., Yerry, M.A.: Finite element mesh generation for use with solid modeling and adaptive analysis. In: Solid Modeling by Computers: From Theory to Applications, 53–80. Springer, Boston (1984) Shephard, M.S., Yerry, M.A.: Finite element mesh generation for use with solid modeling and adaptive analysis. In: Solid Modeling by Computers: From Theory to Applications, 53–80. Springer, Boston (1984)
40.
Zurück zum Zitat Mitchell, W.F., McClain, M.A.: A survey of hp-adaptive strategies for elliptic partial differential equations. In: Recent Advances in Computational and Applied Mathematics, 227–258. Springer, Dordrecht (2011) Mitchell, W.F., McClain, M.A.: A survey of hp-adaptive strategies for elliptic partial differential equations. In: Recent Advances in Computational and Applied Mathematics, 227–258. Springer, Dordrecht (2011)
41.
Zurück zum Zitat Oh, H.C., Lee, B.C.: hp-adaptive finite element method for linear elasticity using higher-order virtual node method. J. Mech. Sci. Technol. 29, 4299–4312 (2015)CrossRef Oh, H.C., Lee, B.C.: hp-adaptive finite element method for linear elasticity using higher-order virtual node method. J. Mech. Sci. Technol. 29, 4299–4312 (2015)CrossRef
43.
Zurück zum Zitat Kelly, D.W.: The Self-Equilibration of Residuals and Complementary a Posteriori Error Estimates in the Finite Element Method. Wiley, Chichester (1984)MATH Kelly, D.W.: The Self-Equilibration of Residuals and Complementary a Posteriori Error Estimates in the Finite Element Method. Wiley, Chichester (1984)MATH
44.
Zurück zum Zitat Sanborn, G.G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst. Dyn. 26, 191–211 (2011)MathSciNetCrossRefMATH Sanborn, G.G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst. Dyn. 26, 191–211 (2011)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Negrut, D., Rampalli, R., Ottarsson, G., et al.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096). J. Comput. Nonlinear Dyn. 2, 73–85 (2007)CrossRef Negrut, D., Rampalli, R., Ottarsson, G., et al.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096). J. Comput. Nonlinear Dyn. 2, 73–85 (2007)CrossRef
Metadaten
Titel
Adaptive ANCF method and its application in planar flexible cables
verfasst von
Yue Zhang
Cheng Wei
Yang Zhao
Chunlin Tan
Yongjian Liu
Publikationsdatum
16.10.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 1/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0721-4

Weitere Artikel der Ausgabe 1/2018

Acta Mechanica Sinica 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.