Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2018

19.01.2018 | Research Paper

Enriched reproducing kernel particle method for fractional advection–diffusion equation

verfasst von: Yuping Ying, Yanping Lian, Shaoqiang Tang, Wing Kam Liu

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection–diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chen, J.S., Pan, C., Roque, C.M.O.L., et al.: A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech. 22, 289–307 (1998)CrossRefMATH Chen, J.S., Pan, C., Roque, C.M.O.L., et al.: A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech. 22, 289–307 (1998)CrossRefMATH
2.
Zurück zum Zitat Chen, J.S., Pan, C., Wu, C., et al.: Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. 139, 195–227 (1996)MathSciNetCrossRefMATH Chen, J.S., Pan, C., Wu, C., et al.: Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. 139, 195–227 (1996)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Chen, J.S., Pan, C., Wu, C.: Large deformation analysis of rubber based on a reproducing kernel particle method. Comput. Mech. 19, 211–227 (1997)MathSciNetCrossRefMATH Chen, J.S., Pan, C., Wu, C.: Large deformation analysis of rubber based on a reproducing kernel particle method. Comput. Mech. 19, 211–227 (1997)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Lian, Y., Zhang, X., Liu, Y.: An adaptive finite element material point method and its application in extreme deformation problems. Comput. Methods Appl. Mech. 241, 275–285 (2012)CrossRefMATH Lian, Y., Zhang, X., Liu, Y.: An adaptive finite element material point method and its application in extreme deformation problems. Comput. Methods Appl. Mech. 241, 275–285 (2012)CrossRefMATH
5.
Zurück zum Zitat Belytschko, T., Lu, Y., Gu, L.: Crack propagation by element-free Galerkin methods. Eng. Fract. Mech. 51, 295–315 (1995)CrossRef Belytschko, T., Lu, Y., Gu, L.: Crack propagation by element-free Galerkin methods. Eng. Fract. Mech. 51, 295–315 (1995)CrossRef
6.
Zurück zum Zitat Belytschko, T., Tabbara, M.: Dynamic fracture using element-free Galerkin methods. Int. J. Numer. Mech. Eng. 39, 923–938 (1996)CrossRefMATH Belytschko, T., Tabbara, M.: Dynamic fracture using element-free Galerkin methods. Int. J. Numer. Mech. Eng. 39, 923–938 (1996)CrossRefMATH
7.
Zurück zum Zitat Guan, P.C., Chi, S.W., Chen, J.S., et al.: Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int. J. Impact Eng. 38, 1033–1047 (2011)CrossRef Guan, P.C., Chi, S.W., Chen, J.S., et al.: Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int. J. Impact Eng. 38, 1033–1047 (2011)CrossRef
8.
Zurück zum Zitat Chi, S., Lee, C., Chen, J.S., et al.: A level set enhanced natural kernel contact algorithm for impact and penetration modeling. Int. J. Numer. Mech. Eng. 102, 839–866 (2015)MathSciNetCrossRefMATH Chi, S., Lee, C., Chen, J.S., et al.: A level set enhanced natural kernel contact algorithm for impact and penetration modeling. Int. J. Numer. Mech. Eng. 102, 839–866 (2015)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Liu, W.K., Chen, Y.: Wavelet and multiple scale reproducing kernel methods. Int. J. Numer. Methods Fluids 21, 901–931 (1995)MathSciNetCrossRefMATH Liu, W.K., Chen, Y.: Wavelet and multiple scale reproducing kernel methods. Int. J. Numer. Methods Fluids 21, 901–931 (1995)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Li, S., Liu, W.K.: Moving least-square reproducing kernel method part II: Fourier analysis. Comput. Methods Appl. Mech. 139, 159–193 (1996)MathSciNetCrossRefMATH Li, S., Liu, W.K.: Moving least-square reproducing kernel method part II: Fourier analysis. Comput. Methods Appl. Mech. 139, 159–193 (1996)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Liu, W.K., Jun, S., Li, S., et al.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Mech. Eng. 38, 1655–1679 (1995)MathSciNetCrossRefMATH Liu, W.K., Jun, S., Li, S., et al.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Mech. Eng. 38, 1655–1679 (1995)MathSciNetCrossRefMATH
12.
13.
Zurück zum Zitat Liu, W.K., Chen, Y., Jun, S., et al.: Overview and applications of the reproducing kernel particle methods. Arch. Comput. Methods Eng. 3, 3–80 (1996)MathSciNetCrossRef Liu, W.K., Chen, Y., Jun, S., et al.: Overview and applications of the reproducing kernel particle methods. Arch. Comput. Methods Eng. 3, 3–80 (1996)MathSciNetCrossRef
14.
Zurück zum Zitat Bessa, M.A., Foster, J.T., Belytschko, T., et al.: A meshfree unification: reproducing kernel peridynamics. Comput. Mech. 53, 1251–1264 (2014)MathSciNetCrossRefMATH Bessa, M.A., Foster, J.T., Belytschko, T., et al.: A meshfree unification: reproducing kernel peridynamics. Comput. Mech. 53, 1251–1264 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Vienna (1997)CrossRefMATH Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Vienna (1997)CrossRefMATH
16.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)CrossRef Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)CrossRef
18.
Zurück zum Zitat Chen, W., Sun, H., Zhang, X., et al.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)MathSciNetCrossRefMATH Chen, W., Sun, H., Zhang, X., et al.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)MathSciNetCrossRefMATH
19.
Zurück zum Zitat West, B.J.: Colloquium: fractional calculus view of complexity: a tutorial. Rev. Mod. Phys. 86, 1169 (2014)CrossRef West, B.J.: Colloquium: fractional calculus view of complexity: a tutorial. Rev. Mod. Phys. 86, 1169 (2014)CrossRef
20.
Zurück zum Zitat Chen, W., Liang, Y., Hu, S.: Fractional derivative anomalous diffusion equation modeling prime number distribution. Fract. Calc. Appl. Anal. 18, 789–798 (2015)MathSciNetCrossRefMATH Chen, W., Liang, Y., Hu, S.: Fractional derivative anomalous diffusion equation modeling prime number distribution. Fract. Calc. Appl. Anal. 18, 789–798 (2015)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Lei, D., Liang, Y., Xiao, R.: A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics. Physica A 450, 465–475 (2018)MathSciNetCrossRef Lei, D., Liang, Y., Xiao, R.: A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics. Physica A 450, 465–475 (2018)MathSciNetCrossRef
22.
Zurück zum Zitat Xiao, R., Sun, H., Chen, W.: A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int. J. Nonlinear Mech. 93, 7–14 (2017)CrossRef Xiao, R., Sun, H., Chen, W.: A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int. J. Nonlinear Mech. 93, 7–14 (2017)CrossRef
23.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic press, New York (1998)MATH Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic press, New York (1998)MATH
24.
Zurück zum Zitat Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)MATH Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)MATH
25.
26.
Zurück zum Zitat Pang, G., Chen, W., Sze, K.Y.: A comparative study of finite element and finite difference methods for two-dimensional space-fractional advection–dispersion equation. Adv. Appl. Math. Mech. 8, 166–186 (2016)MathSciNetCrossRef Pang, G., Chen, W., Sze, K.Y.: A comparative study of finite element and finite difference methods for two-dimensional space-fractional advection–dispersion equation. Adv. Appl. Math. Mech. 8, 166–186 (2016)MathSciNetCrossRef
27.
Zurück zum Zitat Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)MathSciNetCrossRefMATH Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293, 218–237 (2015)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Ying, Y., Lian, Y., Tang, S., et al.: High-order central difference scheme for Caputo fractional derivative. Comput. Methods Appl. Mech. 317, 42–54 (2017)MathSciNetCrossRef Ying, Y., Lian, Y., Tang, S., et al.: High-order central difference scheme for Caputo fractional derivative. Comput. Methods Appl. Mech. 317, 42–54 (2017)MathSciNetCrossRef
29.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \({\mathbb{R}}^{d}\). Numer. Methods Parial Differ. Equ. 23, 256–281 (2007)CrossRefMATH Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \({\mathbb{R}}^{d}\). Numer. Methods Parial Differ. Equ. 23, 256–281 (2007)CrossRefMATH
30.
Zurück zum Zitat Fix, G.J., Roof, J.P.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)MathSciNetCrossRefMATH Fix, G.J., Roof, J.P.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetCrossRefMATH Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Lian, Y., Ying, Y., Tang, S., et al.: A Petrov–Galerkin finite element method for the fractional advection–diffusion equation. Comput. Methods Appl. Mech. 309, 388–410 (2016)MathSciNetCrossRef Lian, Y., Ying, Y., Tang, S., et al.: A Petrov–Galerkin finite element method for the fractional advection–diffusion equation. Comput. Methods Appl. Mech. 309, 388–410 (2016)MathSciNetCrossRef
33.
Zurück zum Zitat Luan, S., Lian, Y., Ying, Y., et al.: An enriched finite element method to fractional advection–diffusion equation. Comput. Mech. 60, 181–201 (2017)MathSciNetCrossRefMATH Luan, S., Lian, Y., Ying, Y., et al.: An enriched finite element method to fractional advection–diffusion equation. Comput. Mech. 60, 181–201 (2017)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)MathSciNetCrossRefMATH Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460–480 (2014)MathSciNetCrossRefMATH Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460–480 (2014)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)MathSciNetCrossRefMATH Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39, A1003–A1037 (2017)MathSciNetCrossRefMATH Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39, A1003–A1037 (2017)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Fleming, M., Chu, Y.A., Moran, B., et al.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Mech. Eng. 40, 1483–1504 (1997)MathSciNetCrossRef Fleming, M., Chu, Y.A., Moran, B., et al.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Mech. Eng. 40, 1483–1504 (1997)MathSciNetCrossRef
39.
Zurück zum Zitat Liu, W.K., Li, S., Belytschko, T.: Moving least-square reproducing kernel methods (I): methodology and convergence. Comput. Methods Appl. Mech. 143, 113–154 (1997)MathSciNetCrossRefMATH Liu, W.K., Li, S., Belytschko, T.: Moving least-square reproducing kernel methods (I): methodology and convergence. Comput. Methods Appl. Mech. 143, 113–154 (1997)MathSciNetCrossRefMATH
Metadaten
Titel
Enriched reproducing kernel particle method for fractional advection–diffusion equation
verfasst von
Yuping Ying
Yanping Lian
Shaoqiang Tang
Wing Kam Liu
Publikationsdatum
19.01.2018
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0742-z

Weitere Artikel der Ausgabe 3/2018

Acta Mechanica Sinica 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.