Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2019

09.10.2019 | Research Paper

Experimental and numerical investigation of the influence of roughness and turbulence on LUT airfoil performance

verfasst von: Shoutu Li, Ye Li, Congxin Yang, Xiaobo Zheng, Qing Wang, Yin Wang, Deshun Li, Wenrui Hu

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vertical-axis wind turbines (VAWTs) have been widely used in urban environments, which contain dust and experience strong turbulence. However, airfoils for VAWTs in urban environments have received considerably less research attention than those for horizontal-axis wind turbines (HAWTs). In this study, the sensitivity of a new VAWT airfoil developed at the Lanzhou University of Technology (LUT) to roughness was investigated via a wind tunnel experiment. The results show that the LUT airfoil is less sensitive to roughness at a roughness height of < 0.35 mm. Moreover, the drag bucket of the LUT airfoil decreases with increasing roughness height. Furthermore, the loads on the LUT airfoil during dynamic stall were studied at different turbulence intensities using a numerical method at a tip-speed ratio of 2. Before the stall, the turbulence intensity did not considerably affect the normal or tangential force coefficients of the LUT airfoil. However, after the stall, the normal force coefficient varied obviously at low turbulence intensity. Moreover, as the turbulence intensity increased, the normal and tangential force coefficients decreased rapidly, particularly in the downwind region of the VAWT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., Raciti Castelli, M.: Small wind turbine effectiveness in the urban environment. Renew. Energy 129, 102–113 (2018)CrossRef Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., Raciti Castelli, M.: Small wind turbine effectiveness in the urban environment. Renew. Energy 129, 102–113 (2018)CrossRef
2.
Zurück zum Zitat Kc, A., Whale, J., Urmee, T.: Urban wind conditions and small wind turbines in the built environment: a review. Renew. Energy 131, 268–283 (2018)CrossRef Kc, A., Whale, J., Urmee, T.: Urban wind conditions and small wind turbines in the built environment: a review. Renew. Energy 131, 268–283 (2018)CrossRef
3.
Zurück zum Zitat Choudhry, A., Leknys, R., Arjomandi, M., Kelso, R.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)CrossRef Choudhry, A., Leknys, R., Arjomandi, M., Kelso, R.: An insight into the dynamic stall lift characteristics. Exp. Therm. Fluid Sci. 58, 188–208 (2014)CrossRef
4.
Zurück zum Zitat Hand, B., Kelly, G., Cashman, A.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)MathSciNetCrossRef Hand, B., Kelly, G., Cashman, A.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)MathSciNetCrossRef
5.
Zurück zum Zitat Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)CrossRef Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)CrossRef
6.
Zurück zum Zitat Wernert, P., Geissler, W., Raffel, M., Kompenhans, J.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)CrossRef Wernert, P., Geissler, W., Raffel, M., Kompenhans, J.: Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34, 982–989 (1996)CrossRef
7.
Zurück zum Zitat Marzabadi, F.R., Soltani, M.R.: Effect of leading-edge roughness on boundary layer transition of an oscillating airfoil. Sci. Iran 20, 508–515 (2013) Marzabadi, F.R., Soltani, M.R.: Effect of leading-edge roughness on boundary layer transition of an oscillating airfoil. Sci. Iran 20, 508–515 (2013)
8.
Zurück zum Zitat Migliore, P.: Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines. J. Energy 7, 291–292 (1983)CrossRef Migliore, P.: Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines. J. Energy 7, 291–292 (1983)CrossRef
9.
Zurück zum Zitat Ferreira, C.J.S., Bijl, H., van Bussel, G., van Kuik, G.: Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J. Phys. Conf. Ser. 75, 012023 (2007)CrossRef Ferreira, C.J.S., Bijl, H., van Bussel, G., van Kuik, G.: Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. J. Phys. Conf. Ser. 75, 012023 (2007)CrossRef
10.
Zurück zum Zitat Ali, S., Lee, S.-M., Jang, C.-M.: Effects of instantaneous tangential velocity on the aerodynamic performance of an H-Darrieus wind turbine. Energy Convers. Manag. 171, 1322–1338 (2018)CrossRef Ali, S., Lee, S.-M., Jang, C.-M.: Effects of instantaneous tangential velocity on the aerodynamic performance of an H-Darrieus wind turbine. Energy Convers. Manag. 171, 1322–1338 (2018)CrossRef
11.
Zurück zum Zitat Islam, M., Ting, D.S.-K., Fartaj, A.: Desirable airfoil features for smaller-capacity straight-bladed VAWT. Wind Eng. 31, 165–196 (2007)CrossRef Islam, M., Ting, D.S.-K., Fartaj, A.: Desirable airfoil features for smaller-capacity straight-bladed VAWT. Wind Eng. 31, 165–196 (2007)CrossRef
12.
Zurück zum Zitat Islam, M., Fartaj, A., Carriveau, R.: Design analysis of a small-capacity straight-bladed VAWT with an asymmetric airfoil. Int. J. Sustain. Energy 30, 179–192 (2011)CrossRef Islam, M., Fartaj, A., Carriveau, R.: Design analysis of a small-capacity straight-bladed VAWT with an asymmetric airfoil. Int. J. Sustain. Energy 30, 179–192 (2011)CrossRef
13.
Zurück zum Zitat Howell, R., Qin, N., Edwards, J., Durrani, N.: Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 35, 412–422 (2010)CrossRef Howell, R., Qin, N., Edwards, J., Durrani, N.: Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 35, 412–422 (2010)CrossRef
14.
Zurück zum Zitat Carrigan, T.J., Dennis, B.H., Han, Z.X., Wang, B.P.: Aerodynamic shape optimization of a vertical-axis wind turbine using differential evolution. ISRN Renew. Energy 2012, 1–16 (2012)CrossRef Carrigan, T.J., Dennis, B.H., Han, Z.X., Wang, B.P.: Aerodynamic shape optimization of a vertical-axis wind turbine using differential evolution. ISRN Renew. Energy 2012, 1–16 (2012)CrossRef
15.
Zurück zum Zitat Subramanian, A., Yogesh, S.A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., Velamati, R.K.: Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133, 179–190 (2017)CrossRef Subramanian, A., Yogesh, S.A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., Velamati, R.K.: Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133, 179–190 (2017)CrossRef
16.
Zurück zum Zitat Han, W., Kim, J., Kim, B.: Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 115, 817–823 (2018)CrossRef Han, W., Kim, J., Kim, B.: Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 115, 817–823 (2018)CrossRef
17.
Zurück zum Zitat Priegue, L., Stoesser, T.: The influence of blade roughness on the performance of a vertical axis tidal turbine. Int. J. Mar. Energy 17, 136–146 (2017)CrossRef Priegue, L., Stoesser, T.: The influence of blade roughness on the performance of a vertical axis tidal turbine. Int. J. Mar. Energy 17, 136–146 (2017)CrossRef
18.
Zurück zum Zitat Walker, J.M., Flack, K.A., Lust, E.E., Schultz, M.P., Luznik, L.: Experimental and numerical studies of blade roughness and fouling on marine current turbine performance. Renew. Energy 66, 257–267 (2014)CrossRef Walker, J.M., Flack, K.A., Lust, E.E., Schultz, M.P., Luznik, L.: Experimental and numerical studies of blade roughness and fouling on marine current turbine performance. Renew. Energy 66, 257–267 (2014)CrossRef
19.
Zurück zum Zitat Kerho, M.F., Bragg, M.B.: Airfoil boundary-layer development and transition with large leading-edge roughness. AIAA J. 35, 75–84 (1997)CrossRef Kerho, M.F., Bragg, M.B.: Airfoil boundary-layer development and transition with large leading-edge roughness. AIAA J. 35, 75–84 (1997)CrossRef
20.
Zurück zum Zitat Braslow, B.A.L., Knox, E.C., Field, L.: simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5. Technical Report Archive & Image Library (1958) Braslow, B.A.L., Knox, E.C., Field, L.: simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5. Technical Report Archive & Image Library (1958)
21.
Zurück zum Zitat Soltani, M.R., Birjandi, A.H., Seddighi Moorani, M.: Effect of surface contamination on the performance of a section of a wind turbine blade. Sci. Iran 18, 349–357 (2011)CrossRef Soltani, M.R., Birjandi, A.H., Seddighi Moorani, M.: Effect of surface contamination on the performance of a section of a wind turbine blade. Sci. Iran 18, 349–357 (2011)CrossRef
22.
Zurück zum Zitat Timmer, W.A., Schaffarczyk, A.P.: The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97-W-300Mod. Wind Energy 7, 295–307 (2004)CrossRef Timmer, W.A., Schaffarczyk, A.P.: The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97-W-300Mod. Wind Energy 7, 295–307 (2004)CrossRef
23.
Zurück zum Zitat Zhang, X., Wang, G., Zhang, M., Liu, H., Li, W.: Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height. Int. J. Hydrog. Energy 42, 18252–18262 (2017)CrossRef Zhang, X., Wang, G., Zhang, M., Liu, H., Li, W.: Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height. Int. J. Hydrog. Energy 42, 18252–18262 (2017)CrossRef
24.
Zurück zum Zitat Freudenreich, K., Kaiser, K., Schaffarczyk, A.P., Winkler, H., Stahl, B.: Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng. 28, 529–546 (2005)CrossRef Freudenreich, K., Kaiser, K., Schaffarczyk, A.P., Winkler, H., Stahl, B.: Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng. 28, 529–546 (2005)CrossRef
25.
Zurück zum Zitat Rooij, R.P., Timmer, W.A.: Roughness sensitivity considerations for thick rotor blade airfoils. J. Sol. Energy Eng. 125, 468–478 (2003)CrossRef Rooij, R.P., Timmer, W.A.: Roughness sensitivity considerations for thick rotor blade airfoils. J. Sol. Energy Eng. 125, 468–478 (2003)CrossRef
26.
Zurück zum Zitat Kim, Y., Xie, Z.-T.: Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput. Fluids 129, 53–66 (2016)MathSciNetCrossRef Kim, Y., Xie, Z.-T.: Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput. Fluids 129, 53–66 (2016)MathSciNetCrossRef
27.
Zurück zum Zitat Devinant, P., Laverne, T., Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 90, 689–707 (2002)CrossRef Devinant, P., Laverne, T., Hureau, J.: Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 90, 689–707 (2002)CrossRef
28.
Zurück zum Zitat Molina, A.C., Bartoli, G., De Troyer, T.: Wind tunnel testing of small vertical-axis wind turbines in turbulent flows. Procedia Eng. 199, 3176–3181 (2017)CrossRef Molina, A.C., Bartoli, G., De Troyer, T.: Wind tunnel testing of small vertical-axis wind turbines in turbulent flows. Procedia Eng. 199, 3176–3181 (2017)CrossRef
29.
Zurück zum Zitat Ahmadi-Baloutaki, M., Carriveau, R., Ting, D.S.K.: Performance of a vertical axis wind turbine in grid generated turbulence. Sustain. Energy Technol. Assess. 11, 178–185 (2015) Ahmadi-Baloutaki, M., Carriveau, R., Ting, D.S.K.: Performance of a vertical axis wind turbine in grid generated turbulence. Sustain. Energy Technol. Assess. 11, 178–185 (2015)
30.
Zurück zum Zitat Peng, H.Y., Lam, H.F.: Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations. Energy 109, 557–568 (2016)CrossRef Peng, H.Y., Lam, H.F.: Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations. Energy 109, 557–568 (2016)CrossRef
31.
Zurück zum Zitat Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. Energy Procedia 80, 312–320 (2015)CrossRef Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. Energy Procedia 80, 312–320 (2015)CrossRef
32.
Zurück zum Zitat Qiao, Z.D., Song, W.P., Gao, Y.W.: Design and experiment of the NPU-WA airfoil family for wind turbines. ACTA Aerodyn. Sin. 30, 260–265 (2012) Qiao, Z.D., Song, W.P., Gao, Y.W.: Design and experiment of the NPU-WA airfoil family for wind turbines. ACTA Aerodyn. Sin. 30, 260–265 (2012)
33.
Zurück zum Zitat Meng, X., Hu, H., Yan, X., Liu, F., Luo, S.: Lift improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerosp. Sci. Technol. 72, 123–133 (2018)CrossRef Meng, X., Hu, H., Yan, X., Liu, F., Luo, S.: Lift improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerosp. Sci. Technol. 72, 123–133 (2018)CrossRef
34.
Zurück zum Zitat Li, S., Li, Y., Yang, C., Zhang, X., Wang, Q., Li, D., Zhong, W., Wang, T.: Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines. Appl. Sci. 8, 2266 (2018)CrossRef Li, S., Li, Y., Yang, C., Zhang, X., Wang, Q., Li, D., Zhong, W., Wang, T.: Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines. Appl. Sci. 8, 2266 (2018)CrossRef
35.
Zurück zum Zitat Somers, D.M.: Design and experimental results for the s814 airfoil, p. 272. National Renewable Energy Lab, Golden (1997) Somers, D.M.: Design and experimental results for the s814 airfoil, p. 272. National Renewable Energy Lab, Golden (1997)
36.
Zurück zum Zitat Kong, L.: Fluid Mechanics. Higher Education Press, Beijing (2011) Kong, L.: Fluid Mechanics. Higher Education Press, Beijing (2011)
37.
Zurück zum Zitat Islam, M.: Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils. Dissertation, University of Windsor (2008) Islam, M.: Analysis of fixed-pitch straight-bladed VAWT with asymmetric airfoils. Dissertation, University of Windsor (2008)
38.
Zurück zum Zitat Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)CrossRef Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z.: Turbulence modeling of deep dynamic stall at relatively low Reynolds number. J. Fluids Struct. 33, 191–209 (2012)CrossRef
39.
Zurück zum Zitat Somers, D.M.: Design and experimental results for the S825 airfoil period of performance : 1998–1999 design and experimental results for the S825 Airfoil. Technical Report NREL/SR-500-36346, National Renewable Energy Laboratory: Golden, CO, USA (2005) Somers, D.M.: Design and experimental results for the S825 airfoil period of performance : 1998–1999 design and experimental results for the S825 Airfoil. Technical Report NREL/SR-500-36346, National Renewable Energy Laboratory: Golden, CO, USA (2005)
Metadaten
Titel
Experimental and numerical investigation of the influence of roughness and turbulence on LUT airfoil performance
verfasst von
Shoutu Li
Ye Li
Congxin Yang
Xiaobo Zheng
Qing Wang
Yin Wang
Deshun Li
Wenrui Hu
Publikationsdatum
09.10.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-019-00898-3

Weitere Artikel der Ausgabe 6/2019

Acta Mechanica Sinica 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.