Skip to main content
Log in

Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flow-induced vibrations. A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester. Based on Euler–Bernoulli beam theory and Kirchhoff’s law, the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments. The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester. Numerical results show that comparing with the galloping-based piezoelectric energy harvester, the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex. With the increase of a wind speed, the vibration of the bluff body passes through three branches: intra-well oscillations, chaotic oscillations, and inter-well oscillations. The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s, which is decreased by 33% compared with the galloping-based piezoelectric energy harvester. The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed, which is increased by 35.3%. Compared with the traditional galloping-based piezoelectric energy harvester, the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li, X.M., Li, D., Wan, J.F., et al.: A review of industrial wireless networks in the context of Industry 4.0. Wireless Netw. 23, 23–41 (2017)

    Google Scholar 

  2. Azizi, S., Ghodsi, A., Jafari, H., et al.: A conceptual study on the dynamics of a piezoelectric MEMS (micro electro mechanical system) energy harvester. Energy. 96, 495–506 (2016)

    Google Scholar 

  3. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54, 36–42 (2016)

    Google Scholar 

  4. Wang, Z.L., Jiang, T., Xu, L.: Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy. 39, 9–23 (2017)

    Google Scholar 

  5. Chen, J., Wang, Z.L.: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule. 1, 480–521 (2017)

    Google Scholar 

  6. Hu, G., Wang, J., Su, Z., et al.: Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Appl. Phys. Lett. 115(7), 073901 (2019)

    Google Scholar 

  7. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)

    MathSciNet  Google Scholar 

  8. Zhang, L., Dai, H., Abdelkefi, A., et al.: Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Appl. Energy 254, 113737 (2019)

    Google Scholar 

  9. Yang, K., Wang, J., Yurchenko, D.: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115(19), 193901 (2019)

    Google Scholar 

  10. Zhang, Y., Wang, T., Luo, A., et al.: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 212, 362–371 (2018)

    Google Scholar 

  11. Zhang, Y., Wang, T., Zhang, A., et al.: Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Rev. Sci. Instrum. 87, 125001 (2016)

    Google Scholar 

  12. Thomson, G., Yurchenko, D., Val, D.V., et al.: Predicting energy output of a stochastic nonlinear dielectric elastomer generator. Energy Convers. Manag. 196, 1445–1452 (2019)

    Google Scholar 

  13. Thomson, G., Lai, Z., Val, D.V., et al.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019)

    Google Scholar 

  14. Sodano, H.A., Anton, S.R.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28, 113001 (2019)

    Google Scholar 

  15. Zou, Q., Ding, L., Wang, H., et al.: Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder. Ocean Eng. 191, 106505 (2019)

    Google Scholar 

  16. Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013)

    Google Scholar 

  17. Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014)

    Google Scholar 

  18. Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2015)

    Google Scholar 

  19. Zhao, L., Yang, Y.: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy 212, 233–243 (2018)

    Google Scholar 

  20. Zhang, L., Dai, H., Abdelkefi, A., et al.: Improving the performance of aeroelastic energy harvesters by an interference cylinder. Appl. Phys. Lett. 111, 073904 (2017)

    Google Scholar 

  21. Ma, Y., Luan, Y., Xu, W.: Hydrodynamic features of three equally spaced, long flexible cylinders undergoing flow-induced vibration. Eur. J. Mech. B Fluids. 79, 386–400 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Abdelmoula, H., Abdelkefi, A.: The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications. J. Sound Vib. 370, 191–208 (2016)

    Google Scholar 

  23. Tan, T., Yan, Z., Lei, H.: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits. Smart Mater. Struct. 26, 075007 (2017)

    Google Scholar 

  24. Tan, T., Yan, Z.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode. Smart Mater. Struct. 26, 035062 (2017)

    Google Scholar 

  25. Hu, G., Tse, K., Wei, M., et al.: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments. Appl. Energy 226, 682–689 (2018)

    Google Scholar 

  26. Wang, J., Zhou, S., Zhang, Z., et al.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage. 181, 645–652 (2019)

    Google Scholar 

  27. Yang, X., He, X., Li, J., et al.: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping. Smart Mater, Struct (2019)

    Google Scholar 

  28. Arrieta, A., Neild, S., Wagg, D.: Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn. 58, 259 (2009)

    MATH  Google Scholar 

  29. Arrieta, A., Hagedorn, P., Erturk, A., et al.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010)

    Google Scholar 

  30. Mcinnes, C., Gorman, D., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008)

    Google Scholar 

  31. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)

    Google Scholar 

  32. Stanton, S.C., Mcgehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)

    Google Scholar 

  33. Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102, 103902 (2013)

    Google Scholar 

  34. Green, P.L., Papatheou, E., Sims, N.D.: Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J. Intell. Mater. Syst. Struct. 24, 1494–1505 (2013)

    Google Scholar 

  35. Ferrari, M., Ferrari, V., Guizzetti, M., et al.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator A Phys. 162, 425–431 (2010)

    Google Scholar 

  36. Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    MathSciNet  Google Scholar 

  37. Zhou, S., Cao, J., Inman, D.J., et al.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016)

    Google Scholar 

  38. Haitao, L., Weiyang, Q., Chunbo, L., et al.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25, 015001 (2015)

    Google Scholar 

  39. Younesian, D., Alam, M.-R.: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017)

    Google Scholar 

  40. Zhou, Z., Qin, W., Zhu, P., et al.: Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Appl. Phys. Lett. 114, 243902 (2019)

    Google Scholar 

  41. Bibo, A., Alhadidi, A.H., Daqaq, M.F.: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters. J. Appl. Phys. 117, 045103 (2015)

    Google Scholar 

  42. Zhang, L., Abdelkefi, A., Dai, H., et al.: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 408, 210–219 (2017)

    Google Scholar 

  43. Wang, J., Tang, L., Zhao, L., et al.: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 172, 1066–1078 (2019)

    Google Scholar 

  44. Zhao, L., Tang, L., Yang, Y.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22, 125003 (2013)

    Google Scholar 

  45. Nemes, A., Zhao, J., Jacono, D.L., et al.: The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 710, 102–130 (2012)

    MATH  Google Scholar 

  46. Zhou, S., Cao, J., Inman, D.J., et al.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Google Scholar 

  47. Harne, R.L., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Google Scholar 

  48. Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2014)

    Google Scholar 

  49. Tabesh, A., Fréchette, L.G.: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester. Proc. Power MEMS 2009, 368–371 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 51606171, 51977196, and 11802237) and China Postdoctoral Science Foundation (Grant 2019M652565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengxi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Geng, L., Zhou, S. et al. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mech. Sin. 36, 592–605 (2020). https://doi.org/10.1007/s10409-020-00928-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00928-5

Keywords

Navigation